Skip to main content
Log in

Entanglement and Squeezing in Dissipative Parametric Amplifier and Converter

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study dynamical properties of two coupled bosonic modes within the frames of the parametric amplifier and parametric converter models, taking into account thermal reservoir effects. Assuming identical reservoirs for the modes, we solve the problem using the multiple scales method (MSM). Analytical solutions for non-symmetrized second-order momenta enable us to study the invariant squeezing coefficient and entanglement via the logarithmic negativity. For the parametric converter, we detect a decrease in the time interval, in which the modes remain entangled, and for fixed initial Gaussian state parameters. We also determine a critical temperature for detecting entanglement in the parametric converter – it is a one-half of the one obtained for time-independent coupling. Fixed the initial states, we obtain a stationary entanglement regime for the parametric amplifier that depends on the reservoir parameters only. In addition, we find a critical temperature above which no entanglement occurs for arbitrary initial Gaussian states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Andreev, V. I. Man’ko, O. V. Man’ko, and E. V. Shchukin, Theor. Math. Phys., 146, 140 (2006).

  2. V. A. Andreev, Milena D. Davidović, L. D. Davidović, et al., J. Russ. Las. Res., 40, 321 (2019).

  3. P. Adam, V. A. Andreev, M. A. Man’ko, et al., Symmetry, 13, 131 (2021).

    Article  Google Scholar 

  4. V. A. Andreev, Milena D. Davidović, L. D. Davidović, et al., Rom. Rep. Phys., 73, 102 (2021).

  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

    MATH  Google Scholar 

  6. R. F.Werner, “Entanglement measures,” in: J.-P. Fran, coise, G. L. Naber, and T. S. Tsun (Eds.), Encyclopedia of Mathematical Physics, Elsevier, Amsterdam (2006), p. 2:233.

  7. H. Jeong, J. Lee, and M. S. Kim, Phys. Rev. A, 61, 052101 (2000).

    Article  ADS  Google Scholar 

  8. A. K. Rajagopal and R. W. Rendell, Phys. Rev. A, 63, 022116 (2001).

    Article  ADS  Google Scholar 

  9. T. Hiroshima, Phys. Rev. A, 63, 022305 (2001).

    Article  ADS  Google Scholar 

  10. S. Olivares, M. G. Paris, and A. R. Rossi, Phys. Lett. A, 319, 32 (2003).

    Article  ADS  Google Scholar 

  11. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, Phys. Rev. A, 69, 012304 (2004).

    Article  ADS  Google Scholar 

  12. J. S. Prauzner-Bechcicki, J. Phys. A: Math. Gen., 37, L173 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  13. J.-H. An, S.-J. Wang, and H.-G. Luo, J. Phys. A: Math. Gen., 38, 3579 (2005).

    Article  ADS  Google Scholar 

  14. A. Serafini, M. G. A. Paris, F. Illuminati, and S. D. Siena, J. Opt. B: Quantum Semiclass. Opt., 7, R19 (2005).

    Article  ADS  Google Scholar 

  15. G.-X. Li, S.-P. Wu, and G.-M. Huang, Phys. Rev. A, 71, 063817 (2005).

    Article  ADS  Google Scholar 

  16. A. Isar, J. Russ. Laser Res., 30, 458 (2009).

    Article  Google Scholar 

  17. J. Eisert and M. B. Plenio, Int. J. Quantum Inf., 01, 479 (2003).

    Article  Google Scholar 

  18. G. Adesso and F. Illuminati, Phys. Rev. A, 72, 032334 (2005).

    Article  ADS  Google Scholar 

  19. G. Adesso and F. Illuminati, J. Phys. A: Math. Theor., 40, 7821 (2007).

    Article  ADS  Google Scholar 

  20. C. Weedbrook, S. Pirandola, R. García-Patrón, et al., Rev. Mod. Phys., 84, 621 (2012).

  21. W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev., 124, 1646 (1961).

    Article  ADS  Google Scholar 

  22. B. R. Mollow and R. J. Glauber, Phys. Rev., 160, 1076 (1967).

    Article  ADS  Google Scholar 

  23. J. Tucker and D. F. Walls, Ann. Phys. (NY), 52, 1 (1969).

    Article  ADS  Google Scholar 

  24. W. Chmielowski and A. V. Chizhov, Theor. Math. Phys., 86, 196 (1991).

    Article  Google Scholar 

  25. E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, J. Mod. Opt., 49, 529 (2002).

    Article  ADS  Google Scholar 

  26. M. Yu. Saygin and A. S. Chirkin, Opt. Spectrosc., 110, 97 (2011).

  27. J. A. López-Saldívar, A. Figueroa, O. Castaños, et al., J. Russ. Laser Res., 37, 23 (2016).

  28. J. A. López-Saldívar, M. A. Man’ko, and V. I. Man’ko, Entropy, 22, 586 (2020).

  29. V. V. Dodonov, Entropy, 23, 634 (2021).

    Article  ADS  Google Scholar 

  30. A. S. Parkins and H. J. Kimble, J. Opt. B: Quantum Semiclass. Opt., 1, 496 (1999).

    Article  ADS  Google Scholar 

  31. A. S. M. de Castro, V. V. Dodonov, and S. S. Mizrahi, J. Opt. B: Quantum Semiclass. Opt., 4, S191 (2002).

    Article  Google Scholar 

  32. A. S. M. de Castro and V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 5, S593 (2003).

    Article  Google Scholar 

  33. A. S. M. de Castro, R. A. N. Siqueira, and V. V. Dodonov, Phys. Lett. A, 372, 367 (2008).

    Article  ADS  Google Scholar 

  34. D. T. Mook and A. H. Nayfeh, Nonlinear Oscillations, Wiley, New York (1995).

    MATH  Google Scholar 

  35. M. Janowicz, Phys. Rep., 375, 327 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Bernal-García, B. Rodríguez, and H. Vinck-Posada, Phys. Lett. A, 383, 1698 (2019).

  37. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2007).

    Book  Google Scholar 

  38. V. V. Dodonov and O. V. Man’ko, Physica A, 130, 353 (1985).

  39. V. V. Dodonov, “Parametric excitation and generation of nonclassical states in linear media,” in: V. V. Dodonov and V. I. Man’ko (Eds.), Theory of Nonclassical States of Light, Taylor & Francis, London (2003), p. 153–218.

    Chapter  Google Scholar 

  40. M. B. Menskii, Phys. Usp., 46, 1163 (2003).

    Article  ADS  Google Scholar 

  41. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  42. T. Linowski, C. Gneiting, and Ł. Rudnicki, Phys. Rev. A, 102, 042405 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dodonov.

Additional information

We dedicate this paper to the memory of Dr. Vladimir Andreev, who was interested in the areas related to our research – entanglement, quantum amplifiers, and quantum converters – and made important contributions [1–4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, C.E.K., de Lara, L.S., de Castro, A.S.M. et al. Entanglement and Squeezing in Dissipative Parametric Amplifier and Converter. J Russ Laser Res 43, 28–38 (2022). https://doi.org/10.1007/s10946-022-10020-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10020-x

Keywords

Navigation