Skip to main content
Log in

Motion of Cold Atoms in a Labyrinth Created by a Three-Dimensional Optical Lattice

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The coherent dynamics of a cold two-level atom in a three-dimensional optical lattice is treated in the semiclassical approximation, taking into account the coupling between the atom internal and external degrees of freedom. The nine-dimensional dynamical system with Hamilton–Bloch equations and two integrals of motion is derived in order to describe all possible modes of atomic motion inside the lattice. Atom is shown to move regularly or chaotically in the lattice labyrinth in dependence on the values of its initial momentum and on the values of the control parameters, the detuning between the atomic transition and laser frequencies and the atomic recoil frequency. Hamiltonian chaos arises under appropriate conditions and manifests itself as chaotic Rabi oscillations of the internal atomic variables and as a chaotic wandering in the real space. The chaotic behavior is quantified by positive values of the maximum Lyapunov exponent and is found to occur only near the optical resonance. The deterministic Hamiltionian chaos arises as a result of the random-like “jumps” in the magnitude of the synchronized component of the atomic electric dipole moment, when the atom approaches the nodes of the three-dimensional standing wave. Due to the coupling between internal and external degrees of freedom, these “jumps” cause pseudo-random behavior of the atomic momentum and, as a consequence, a chaotic wandering in the absolutely rigid optical lattice without any external modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms, Gordon and Breach Science Publishers, New York (1987).

    Google Scholar 

  2. V. Letokhov, Laser Control of Atoms and Molecules, Oxford University Press, New York (2007).

    Google Scholar 

  3. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scientific, Singapore (1990).

    Book  Google Scholar 

  4. G. A. Askaryan, Sov. Phys. JETP, 15, 1088 (1962).

    Google Scholar 

  5. V. S. Letokhov, JETP Lett., 7, 272 (1968).

    ADS  Google Scholar 

  6. A. Hemmerich, D. Schropp, Jr., and T. W. Hansch, Phys. Rev. A, 44, 1910 (1991).

    Article  ADS  Google Scholar 

  7. G. Grynberg and C. Robilliard, Phys. Rep., 355, 335 (2001).

    Article  ADS  Google Scholar 

  8. G. Raithel and N. Morrow, Adv. At. Mol. Opt. Phys., 53, 187 (2006).

    Article  ADS  Google Scholar 

  9. M. G. Raizen, Adv. At. Mol. Opt. Phys., 41, 43 (1999).

    Article  ADS  Google Scholar 

  10. S. V. Prants and L. S. Yacoupova, J. Mod. Opt., 39, 961 (1992).

    Article  ADS  Google Scholar 

  11. R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A, 45, R19 (1992).

    Article  ADS  Google Scholar 

  12. S. V. Prants, Phys. Scr., 92, 044002 (2017).

    Article  ADS  Google Scholar 

  13. F. Bardou, J. P. Bouchaud, O. Emile, et al., Phys. Rev. Lett., 72, 203 (1994).

    Article  ADS  Google Scholar 

  14. F. Bardou, J. P. Bouchaud, A. Aspect, and C. Cohen-Tannoudji, Lévy Statistics and Laser Cooling, Cambridge University Press (2002).

  15. L. E. Kon’kov and S. V. Prants, JETP Lett., 65, 833 (1997).

  16. S. V. Prants and L. E. Kon’kov, Phys. Lett. A, 225, 33 (1997).

    Article  ADS  Google Scholar 

  17. S. V. Prants, L. E. Kon’kov, and I. L. Kirilyuk, Phys. Rev. E, 60, 335 (1999)

    Article  ADS  Google Scholar 

  18. V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys., 96, 832 (2003).

    Article  ADS  Google Scholar 

  19. S. V. Prants and M. Yu. Uleysky, Phys. Lett. A, 309, 357 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. V. Prants, M. Edelman, and G. M. Zaslavsky, Phys. Rev. E, 66, 046222 (2002).

    Article  ADS  Google Scholar 

  21. S. V. Prants, M. Yu. Uleysky, and V. Yu. Argonov, Phys. Rev. A, 73, 023807 (2006).

    Article  ADS  Google Scholar 

  22. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 75, 063428 (2007).

    Article  ADS  Google Scholar 

  23. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).

    Article  ADS  Google Scholar 

  24. V. O. Vitkovsky and S. V. Prants, Opt. Spectrosc., 114, 52 (2013).

    Article  ADS  Google Scholar 

  25. S. V. Prants, J. Exp. Theor. Phys., 109, 751 (2009).

    Article  ADS  Google Scholar 

  26. S. V. Prants, JETP Lett., 104, 749 (2016).

    Article  ADS  Google Scholar 

  27. D. Hennequin and D. Verkerk, Eur. Phys. J. D, 57, 95 (2010).

    Article  ADS  Google Scholar 

  28. E. Horsley, S. Koppell, and L. Reichl, Phys. Rev. E, 89, 012917 (2014).

    Article  ADS  Google Scholar 

  29. Y. Boretz and L. E. Reichl, Phys. Rev. E, 91, 042901 (2015).

    Article  ADS  Google Scholar 

  30. M. D. Porter and L. E. Reichl, Phys. Rev. E, 93, 012204 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. V. Prants and L. E. Kon’kov, J. Russ. Laser Res., 40, 348 (2019).

    Article  Google Scholar 

  32. S. V. Prants, J. Exp. Theor. Phys., 131, 410 (2020).

    Article  ADS  Google Scholar 

  33. S. V. Prants and L. E. Kon’kov, J. Russ. Laser Res., 41, 300 (2020).

    Article  Google Scholar 

  34. L. E. Kon’kov and S. V. Prants, J. Math. Phys., 37, 1204 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Prants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prants, S.V. Motion of Cold Atoms in a Labyrinth Created by a Three-Dimensional Optical Lattice. J Russ Laser Res 43, 18–27 (2022). https://doi.org/10.1007/s10946-022-10019-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10019-4

Keywords

Navigation