Skip to main content
Log in

Theoretical Treatment of the Hyper-Raman Scattering of Light Under Two-Photon Excitation Near the Lowest Exciton Level in a CdS Crystal

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We theoretically study the resonant hyper-Raman scattering of light by LO-phonons in a CdS crystal with the wurtzite structure, taking into account the influence of the complex valence band on the lowest exciton state by the use of the of the perturbation theory. The scattering processes including the two-photon transitions to s- and p-excitons of the A series are considered. We show that the assumption of the possible dipole transitions between the sub-bands leads to additional scattering mechanisms, which can in some cases have a noticeable effect on the frequency dependence of the cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Polivanov and R. Sh. Sayakhov, JETP Lett., 30, 580 (1979).

    ADS  Google Scholar 

  2. L. E. Zubkova, K. K. Ondriash, Yu. N. Polivanov, and K. A. Prokhorov, JETP Lett., 57, 348 (1993).

    ADS  Google Scholar 

  3. K. Inoue, F. Minami, Y. Kato, et al., J. Cryst. Growth, 117, 738 (1992).

    Article  ADS  Google Scholar 

  4. V. A. Maslov, K. K. Ondriash, Yu. N. Polivanov, et al., Laser Phys., 6, 132 (1996).

    Google Scholar 

  5. L. E. Semenova and K. A. Prokhorov, Laser Phys. Lett., 1, 253 (2004).

    Article  ADS  Google Scholar 

  6. K. Watanabe and K. Inoue, J. Phys. Soc. Jpn., 58, 726 (1989).

    Article  ADS  Google Scholar 

  7. K. Inoue and K. Watanabe, Phys. Rev B, 39, 1977 (1989).

    Article  ADS  Google Scholar 

  8. K. Inoue, K. Yoshida, F. Minami, and Y. Kato, Phys. Rev. B, 45, 8807 (1992).

    Article  ADS  Google Scholar 

  9. K. Watanabe and K. Inoue, Phys. Rev B, 41, 7957 (1990).

    Article  ADS  Google Scholar 

  10. K. Watanabe, K. Inoue, and F. Minami, Phys. Rev B, 46, 2024 (1992).

    Article  ADS  Google Scholar 

  11. S. Kono, N. Naka, M. Hasuo, et al., Solid State Commun., 97, 455 (1996).

    Article  ADS  Google Scholar 

  12. Y. Yamada, N. Fukutake, K. Hiramatsu, and H. Kano, Chem. Lett., 47, 660 (2018).

    Article  Google Scholar 

  13. A. V. Baranov, K. Inoue, K. Toba, et al., Phys. Rev. B, 53, R1721 (1996).

    Article  ADS  Google Scholar 

  14. K. Inoue, A. V. Baranov, A. Yamanaka, Physica B, 219&220, 508 (1996)

    Article  Google Scholar 

  15. E. Menéndez-Proupin, C. Trallero-Giner, and A. García-Cristobal, Phys. Rev. B, 60, 5513 (1999).

  16. E. Villa-Aleman, A. L. Houk, D. D. Dick, and S. E. Hunyadi Murph, J. Raman Spectrosc., 51, 1260 (2020).

    Article  ADS  Google Scholar 

  17. R. Tan, D. F. Kelley, and A. M. Kelley, J. Phys. Chem. C, 123, 16400 (2019).

    Article  Google Scholar 

  18. A. M. Kelley, J. Phys. Chem. A, 112, 11975 (2008).

    Article  Google Scholar 

  19. A. M. Kelley, Ann. Rev. Phys. Chem., 61, 41 (2010).

    Article  Google Scholar 

  20. C. B. Milojevich, D. W. Silverstein, L. Jensen, and J. P. Camden, J. Am. Chem. Soc., 133, 14590 (2011)

    Article  Google Scholar 

  21. R. Shimada, H. Kano and H. Hamaguchi, J. Raman Spectrosc., 37, 469 (2006).

    Article  ADS  Google Scholar 

  22. R. Shimada and H. Hamaguchi, J. Chem. Phys., 140, 204506 (2014).

  23. C. B. Marble, X. Xu, M. Keppler, et al., Proc. SPIE, 11288, 1128829 (2020).

    Google Scholar 

  24. C.-I. Wen and H. Hiramatsu, J. Raman Spectrosc., 51, 274 (2020).

    Article  ADS  Google Scholar 

  25. M. Asakura and M. Okuno, J. Phys. Chem. Lett., 12, 4780 (2021).

    Article  Google Scholar 

  26. D. L. Andrews and T. Thirunamachandran, J. Chem. Phys., 70, 1027 (1979).

    Article  ADS  Google Scholar 

  27. W. Liang, H. Ma, H. Zang, and C. Ye, Int. J. Quantum Chem., 115, 550 (2015).

    Article  Google Scholar 

  28. R.-H. Zheng, W.-M. Wei, Y.-Y. Sun, and Q. Shi, J. Phys. Chem. A, 115, 2231 (2011).

    Article  Google Scholar 

  29. T. G Burova and A. A. Anashkin, Opt. Spectrosc., 108, 12 (2010).

    Article  ADS  Google Scholar 

  30. T. G. Burova and A. A. Anashkin, Opt. Spectrosc., 108, 502 (2010).

    Article  ADS  Google Scholar 

  31. T. G. Burova, G. N. Ten, and R. S. Shcherbakov, Opt. Spectrosc., 112, 821 (2012).

    Article  ADS  Google Scholar 

  32. T. G. Burova, M. N. Nurlygayanova, and G. N. Ten, Opt. Spectrosc., 117, 582 (2014).

    Article  Google Scholar 

  33. A. García-Crystóbal, A. Cantarero, C. Trallero-Giner, and M. Cardona, Phys. Rev. B, 58, 10443 (1998).

  34. A. García-Crystóbal, A. Cantarero, C. Trallero-Giner, and M. Cardona, Physica B, 263-264, 809 (1999).

  35. L. E. Semenova and K. A. Prokhorov, J. Exp. Theor. Phys., 96, 922 (2003)

    Article  ADS  Google Scholar 

  36. L. E. Semenova, G. Yu. Nikolaeva, and K. A. Prokhorov, J. Phys.: Conf. Ser., 826, 012004 (2017).

  37. L. E. Semenova, J. Phys.: Conf. Ser., 999, 012012 (2018).

  38. E. Gutsche and E. Jahne, Phys. Status Solidi, 19, 823 (1967).

    Article  Google Scholar 

  39. R. M. Martin, Phys. Rev. B, 4, 3676 (1971).

    Article  ADS  Google Scholar 

  40. D. C. Reynolds, “Excitons in II-VI compounds” in: Optical Properties in Solids, Plenum Press, New York (1969), p. 239.

    Chapter  Google Scholar 

  41. V. V. Sobolev, Bands and Excitons of the AIIBVI Group Compounds [in Russian], Shtiintsa, Chisinau (1980).

  42. L. C. Lew Yan Voon, M. Willatzen, M. Cardona, and N. E. Christensen, Phys. Rev. B, 53, 10703 (1996).

  43. G. D. Mahan, Phys. Rev., 170, 825 (1968).

    Article  ADS  Google Scholar 

  44. K. C. Rustagi, F. Pradere, and A. Mysyrowicz, Phys. Rev. B, 8, 2721 (1973).

    Article  ADS  Google Scholar 

  45. L. Hostler, J. Math. Phys., 5, 591 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Cardona and G. Harbeke, Phys. Rev., 137, A1467 (1965).

    Article  ADS  Google Scholar 

  47. M. M. Denisov and V. P. Makarov, Phys. Status Solidi B, 56, 9 (1973).

    Article  ADS  Google Scholar 

  48. R. N. Euwema, T. C. Collins, D. G. Shankland, and J. S. DeWitt, Phys. Rev., 162, 710 (1967).

    Article  ADS  Google Scholar 

  49. I. S. Grigor’ev and E. Z. Meilikhov (Eds.), Physical Quantities: Handbook [in Russian], Energoatomizdat, Moscow (1991).

  50. N. B. An, N. V. Hieu, N. T. Thang, and N. A. Viet, Phys. Rev. B, 25, 4075 (1982).

    Article  ADS  Google Scholar 

  51. V. P. Makarov, Phys. Status Solidi B, 44, 475 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila E. Semenova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, L.E. Theoretical Treatment of the Hyper-Raman Scattering of Light Under Two-Photon Excitation Near the Lowest Exciton Level in a CdS Crystal. J Russ Laser Res 42, 721–729 (2021). https://doi.org/10.1007/s10946-021-10014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-10014-1

Keywords

Navigation