Skip to main content
Log in

Defects-Induced Density of Acoustic States in Raman Spectra of Congruent LiNbO3

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate Raman spectra and quasi-elastic light scattering in stoichiometric and congruent lithium niobate crystals at 296 K. We carry out a quantitative analysis of the spectra in the frequency range 0 – 70 cm1 for samples with different values of Q factor in a model, where coupling of the low-frequency A1 (TO)-symmetry optical mode with a relaxing self-energy describing stoichiometric defects is taken into account. We show that a wide band in the frequency range 60 – 120 cm belongs to the density of acoustic states. The results obtained by comparing the model calculations with the experiment allow us to draw the conclusion that spatially-extended defects play a significant role in the formation of a dynamic central peak during a structural phase transition in congruent lithium niobate crystals. At the same time, defects provided due to the substitution of lithium atoms by niobium atoms and impurity atoms induce violation of the selection rules for the wave vector in the Brillouin zone and registration of the acoustic density of states in the Raman spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lengyel, Á. Péter, L. Kovács, et al., Appl. Phys. Rev., 2, 040601 (2015); https://doi.org/10.1063/1.4929917

    Article  ADS  Google Scholar 

  2. N. Sidorov, V. Palatnikov, and A. Kadetova, Crystals, 9, 535 (2019).

    Article  Google Scholar 

  3. A. A. Anikiev, M. F. Umarov, and J. F. Scott, AIP Adv., 8, 115016 (2018); https://doi.org/10.1063/1.5055386

    Article  ADS  Google Scholar 

  4. P. Gunter and J. P. Huignard, Photorefractive Materials and Their Applications, Pt. 1, Springer-Verlag, Berlin (2006).

  5. A. A. Anikiev, N. V. Sidorov, M. N. Palatnikov, et al., Opt. Mater., 111, 110729 (2021); https://doi.org/10.1016/j.optmat.2020.110729

    Article  Google Scholar 

  6. N. V. Sidorov, M. N. Palatnikov, and L. A. Bobreva, J. Struct. Chem., 60, 1434 (2019).

    Google Scholar 

  7. S. C. Abrahams, Properties of Lithium Niobate, Pergamon Press, New York (1989).

    Google Scholar 

  8. A. M. Prokhorov and Yu. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate, Adam Hilger, New York (1990).

  9. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK (1977).

    Google Scholar 

  10. T. Volk and M. Wohlecke, Lithium Niobate. Defects, Photorefraction, and Ferroelectric Switching, Berlin, Springer (2008).

  11. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectra, Polaritons [in Russian], Nauka, Moscow (2003).

  12. M. D. Fontana and P. Bourson, Appl. Phys. Rev., 2, 040602 (2015).

    Article  ADS  Google Scholar 

  13. K. Parlinsky, Z. Q. Li, and Y. Kawazoe, Phys. Rev. B, 61, 272 (2000).

    Article  ADS  Google Scholar 

  14. V. Caciuc, A. V. Postnikov, and G. Borstel, Phys. Rev. B, 61, 8806 (2000).

    Article  ADS  Google Scholar 

  15. M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, et al., J. Cryst. Growth, 291, 390 (2006).

    Article  ADS  Google Scholar 

  16. W. P. Mason, Physical Acoustics and the Properties of Solids, Murray Hint, Princeton, New Jersey (1958).

    Google Scholar 

  17. A. G. Smagin and M. I. Yaroslavsky, Piezoelectricity of Quartz and Quartz Resonators [in Russian], Energy, Moscow (1970).

  18. V. S. Gorelik, “Investigation of bound and continuous vibrational states of dielectric crystals by the Raman light scattering method” [in Russian], Trudy FIAN, Nauka, Moscow (1983), Vol. 132, p. 15.

  19. N. V. Surovtsev, V. K. Malinovsky, A. M. Pugachev, and A. P. Shebanin, Phys. Solid State, 45, 534 (2003); https://doi.org/10.1134/1.1562243

    Article  ADS  Google Scholar 

  20. M. R. Chowdhury, G. E. Peckham, and D. H. Saunderson, J. Phys. C: Solid State Phys., 11, 1671 (1978).

    Article  ADS  Google Scholar 

  21. J. Jackle, in: W. A. Phillips (Ed.), Amorphous Solids: Low-Temperature Properties, Springer, Berlin (1981), p. 278.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anikiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikiev, A.A., Sidorov, N.V., Umarov, M.F. et al. Defects-Induced Density of Acoustic States in Raman Spectra of Congruent LiNbO3. J Russ Laser Res 42, 688–696 (2021). https://doi.org/10.1007/s10946-021-10011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-10011-4

Keywords

Navigation