Skip to main content

Advertisement

Log in

Numerical Simulations and Analysis of Mechanisms of Paint Removal with a Pulsed Laser

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

To study the process of removing acrylic polyurethane paint from a 2024 aluminum alloy surface with a pulsed laser, we establish a finite-element model via COMSOL Multiphysics software. We analyze and verify experimentally effects of different parameters on the temperature and stress fields during laser exposure and discuss the mechanism of laser paint removal. At slow scanning speeds, the heat accumulation is greater, with a higher instantaneous maximum temperature and thermal stress on the paint surface. The temperature and stress increase with laser energy density. The paint is completely removed at an energy density of 9.44 J/cm2. During paint removal, energy is transferred to the metal substrate via heat conduction. The laser also directly interacts with the metal and ablation is visible on the substrate surface. Analysis of the surface morphology indicates that the mechanisms of paint removal are mainly ablation, as well as vibrational and impact effects. These results provide a reference for the selection of process parameters for paint removal with lasers, as a well as an in-depth analysis of the mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yandouzi, S. Gaydos, D. Guo, et al., J. Therm. Spray Technol., 23, 1281 (2014).

    Article  ADS  Google Scholar 

  2. K. G. Watkins, “High-power lasers in manufacturing,” Proc. SPIE, 3888, 165 (2000).

    Article  ADS  Google Scholar 

  3. J. P. Liu, J. Wang, L. Mazzola, et al., Surf. Coat. Technol., 349, 980 (2018).

    Article  Google Scholar 

  4. F. D. Zhang, H. Liu, C. Suebka, et al., Appl. Surf. Sci., 435, 452 (2018).

    Article  ADS  Google Scholar 

  5. T. Palomar, M. Oujja, I. Llorente, et al., Appl. Surf. Sci., 387, 118 (2016).

    Article  ADS  Google Scholar 

  6. S. Pleasants, D. M. Kane, Appl. Phys., 93, 8862 (2003).

    Article  Google Scholar 

  7. N. Arnold, Appl. Surf. Sci., 208, 15 (2003).

    Article  ADS  Google Scholar 

  8. K. C. Lee and J. Lin, Opt. Laser Technol., 34, 639 (2002).

    Article  ADS  Google Scholar 

  9. A. W. AlShaer, L. Li, A. Mistry, et al., Opt. Laser Technol., 64, 162 (2014).

    Article  ADS  Google Scholar 

  10. Y. F. Lu, W. D. Song, M. Hong, et al., J. Appl. Phys., 80, 499 (1996).

    Article  ADS  Google Scholar 

  11. W. N. Zhao, Y. H. Huang, H. W. Song, et al., Chinese J. Lasers, 44, 602003 (2017).

    Article  Google Scholar 

  12. S. Marimuthu, A. Mhich, I. S. Molchan, et al., J. Heat Transfer, 135, 1 (2013).

    Article  Google Scholar 

  13. H. S. Lim and J. Yoo, J. Mech. Sci. Technol., 25, 1811 (2011).

    Article  Google Scholar 

  14. G. L. Zhou, Manufacturing Automation, 30, 90 (2008).

    Google Scholar 

  15. L. Y. Yue, Z. B. Wang, L. Li, et al., Opt. Laser Technol., 45, 533 (2013).

    Article  ADS  Google Scholar 

  16. C. F. Liu, G. Y. Feng, G. L. Deng, et al., Laser Technol., 40, 274 (2016).

    Google Scholar 

  17. W. H. Tang, X. W. Ran, Z. H. Xu, et al., Spacecraft Environment Engineering, 27, 32 (2010).

    Google Scholar 

  18. H. C. Zhao, Y. L Qiao, Q. Zhang, et al., Appl. Opt., 59, 7053 (2020).

  19. F. Brygo, C. Dutouquet, F. Le Guern, et al., Appl. Surf. Sci., 252, 2131 (2006).

    Article  ADS  Google Scholar 

  20. H. C. Zhao, Y. L. Qiao, X. Du, et al., Appl. Sci., 9, 5500 (2019).

    Article  Google Scholar 

  21. D. E. Roberts, Appl. Phys. A, 79, 1067 (2004).

    Article  ADS  Google Scholar 

  22. K. Liu and E. Garmire, Appl. Opt., 34, 4409 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Xu, Y., Zhou, K. et al. Numerical Simulations and Analysis of Mechanisms of Paint Removal with a Pulsed Laser. J Russ Laser Res 42, 598–608 (2021). https://doi.org/10.1007/s10946-021-09998-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09998-7

Keywords

Navigation