Skip to main content
Log in

Terahertz Dual-Band Near-Zero Effective Index Metamaterial Based on Double-Sided Metal Microstructure

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The zero-refractive-index metamaterials have excellent electromagnetic properties, which provide new ideas and methods to realize the control of electromagnetic waves and the design of new photoelectric devices. Here, we propose a double-sided metamaterial structure to achieve double-zero refractive index in the terahertz region. We use the S parameter inversion algorithm to extract the equivalent electromagnetic parameters of the metamaterial. By optimizing the design of structural parameters, we show that the effective refractive index can be achieved to be near zero at 0.5 – 1.7 THz and at 2.7 – 3.4 THz. By monitoring the current density distribution and the near-field distribution on the surface of the structure, we prove that the metamaterial structure has obvious zero refractive index effect at 1.66 and 3.34 THz. In addition, the influence of geometric parameters of metamaterial structures on equivalent refractive index is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. He and H. Lu, Nanotechnology, 25, 325201 (2014).

    Article  ADS  Google Scholar 

  2. X. He, Carbon, 82, 229(2015).

    Article  Google Scholar 

  3. H. Guan, H. Chen, J. Wu, et al., Opt. Lett., 39, 170 (2014).

    Article  ADS  Google Scholar 

  4. X. He, X. Zhong, F. Lin, et al., Opt. Mater. Express, 6, 331 (2016).

    Article  ADS  Google Scholar 

  5. X. Luo, Z. Tan, C. Wang, et al., Chinese Opt. Lett., 17, 093101 (2019).

    Article  ADS  Google Scholar 

  6. W. Liang, Z. Li, Y. Wang, et al., Photon. Res., 7, 318 (2019).

    Article  ADS  Google Scholar 

  7. T. Hou, Y. An, Q. Chang, et al., High Power Laser Sci. Eng., 7, e59 (2019).

    Article  Google Scholar 

  8. S. Teng, Q. Zhang, H. Wang, et al., Photon. Res., 7, 246 (2019).

    Article  Google Scholar 

  9. M. Akram, G. Ding, K. Chen, et al., Adv. Mater., 32, 1907308 (2020).

    Article  Google Scholar 

  10. M. Akram, M. Mehmood, X. Bai, et al., Adv. Opt. Mater., 7, 1801628 (2019).

    Article  Google Scholar 

  11. W. Zhu, M. Jiang, H. Guan, et al., Photon. Res., 5, 684 (2017).

    Article  Google Scholar 

  12. H. Wang, L. Liu, C. Zhou, et al., Nanophotonics, 8, 317 (2019).

    Article  Google Scholar 

  13. Q. Zhang, H. Wang, L. Liu, et al., Opt. Express, 26, 24145(2018).

    Article  ADS  Google Scholar 

  14. H. Wang, L. Liu, C. Liu, et al., New J. Phys., 20, 033024 (2018) .

    Article  ADS  Google Scholar 

  15. Z. Zhang, G. Chen, M. Yang, et al., Nanophotonics, 9, 2387 (2019).

    Article  Google Scholar 

  16. X. Jing, X. Gui, P. Zhou, et al., J. Lightw. Technol., 36, 2322 (2018).

    Article  ADS  Google Scholar 

  17. R. Xia, X. F. Jing, X. C. Gui, et al., Opt. Mater. Express, 7, 977 (2017).

    Article  ADS  Google Scholar 

  18. J. Zhao, X. Jing, W. Wang, et al., Opt. Laser Technol., 95, 56 (2017).

    Article  ADS  Google Scholar 

  19. W. Wang, X. Jing, J. Zhao, et al., Opt. Appl., 47, 183 (2017).

    Google Scholar 

  20. L. Chen, X. Jing, Y. Tian, et al., J. Laser Appl., 27, 022001 (2015).

    Article  ADS  Google Scholar 

  21. L. Chen, X. Jing, L. Wang, et al., Opt. Laser Technol., 62, 95 (2014).

    Article  ADS  Google Scholar 

  22. J. Mian, H. Zhu, D. Zhu, et al., Optoelectron. Adv. Mat., 11, 148 (2017).

    Google Scholar 

  23. Y. Wu, S. Jin, X. Jing, et al., Opt. Eng., 51, 128001 (2012).

    Article  ADS  Google Scholar 

  24. L. Jiang, B. Fang, Z. Yan, et al., Microw. Opt. Technol. Lett., 62, 6 (2020).

    Google Scholar 

  25. X. Jing, Y. Ke. Y. Tian, et al., IEEE Access., 8, 164795 (2020).

  26. X. Jing, Y. Xu, H. Gan, et al., IEEE Access., 7, 144945, (2019).

    Article  Google Scholar 

  27. B. Fang, C. Li, Y. Peng, et al., Microw. Opt. Technol. Lett., 61, 1634 (2019).

    Article  Google Scholar 

  28. B. Fang, Z. Cai, Y. Peng, et al., J. Electromagnet. Waves, 33, 1375 (2019).

    Article  Google Scholar 

  29. B. Fang, B. Li, Y. Peng, et al., Microw. Opt. Technol. Lett., 61, 2385 (2019).

    Article  Google Scholar 

  30. X. Jing, S. Jin, Y. Tian, et al., Opt. Laser Technol., 48, 160 (2013).

    Article  ADS  Google Scholar 

  31. Y. Fu, L. Xu, Z. Hang, et al., Appl. Phys. Lett., 104, 193509 (2014).

    Article  ADS  Google Scholar 

  32. C. Zhang, C. Chan, and X. Hu, Sci. Rep., 4, 6979 (2014).

    Article  ADS  Google Scholar 

  33. X. Jia and X. Wang, Optik, 182, 464 (2019).

    Article  ADS  Google Scholar 

  34. A. Evangelos, M. Amanollahi, M. Zamani, et al., Opt. Mater., 99, 109539 (2019).

    Google Scholar 

  35. E. Mohammadi, K. L. Tsakmakidis, F. Sohrabi, et al., Microw. Opt. Technol. Lett., 58, 233 (2019).

    Google Scholar 

  36. M. Bhaskar, E. Johari, Z. Akhter, et al., Microw. Opt. Technol. Lett., 58, 233 (2015).

    Article  Google Scholar 

  37. A. Roghayyeh and M. Z. B. Vahedpour, Opt. Commun., 403, 170 (2017).

    Article  Google Scholar 

  38. A. Boubakri, F. Choubeni, T. H. Vuong, et al., Opt. Mater., 69, 432 (2017).

    Article  ADS  Google Scholar 

  39. P. Qiu, W. Qiu, Z. Lin, et al., Sci. Rep., 7, 9588 (2017).

    Article  ADS  Google Scholar 

  40. J. W. Ma, X. Q. Zhu, S. Bi, et al., Opt. Commun., 446, 113 (2019).

    Article  ADS  Google Scholar 

  41. Q. L. Zhang, L. M. Si, Y. Huang, et al., AIP Adv., 4, 037103 (2014).

    Article  ADS  Google Scholar 

  42. J. K. Yang, C. Kang, I. Sohn, et al., Opt. Express, 18, 25371 (2010).

    Article  ADS  Google Scholar 

  43. I. C. Khoo, D. H. Werner, X. Liang, et al., Opt. Lett., 31, 2592 (2006).

    Article  ADS  Google Scholar 

  44. T. Suzuki and H. Asada, Opt. Express, 28, 21509 (2020).

    Article  ADS  Google Scholar 

  45. L. Jiang, B. Fang, Z. G. Yan, et al., Opt. Laser Technol., 123, 105949 (2020).

    Article  Google Scholar 

  46. P. Markoˇs and C. M. Soukoulis, Opt. Express B, 11, 649 (2003).

    Article  ADS  Google Scholar 

  47. D. R. Smith, S. Schultz, P. Markoˇs, et al., Phys. Rev. B, 65, 195104 (2002).

    Article  ADS  Google Scholar 

  48. X. Chen, T. M. Grzegorczyk, B. I. Wu, et al., Phys. Rev. E, 70, 016608 (2004).

    Article  ADS  Google Scholar 

  49. D. R. Smith, D. C. Vier, T. Koschny, et al., Phys. Rev. E, 71, 036617 (2005).

    Article  ADS  Google Scholar 

  50. V. A. Markel, Phys. Rev. E, 78, 026608 (2008).

    Article  ADS  Google Scholar 

  51. R. A. Depine and A. Lakhtakia, Phys. Rev. E, 70, 048601 (2004).

    Article  ADS  Google Scholar 

  52. A. L. Efros, Phys. Rev. E, 70, 048602 (2004).

    Article  ADS  Google Scholar 

  53. T. Koschny, P. Markos, D. R. Smith, et al., Phys. Rev. E, 68, 065602 (2003).

    Article  ADS  Google Scholar 

  54. L. Koirala, C. Park, S. Lee, et al., Chinese Opt. Lett., 17, 082301 (2019).

    Article  ADS  Google Scholar 

  55. M. Huault, D. D. Luis, J. Apinaniz, et al., High Power Laser Sci. Eng., 7, e60 (2019).

    Article  Google Scholar 

  56. B. Du, H. B. Cai, W. S. Zhang, et al., High Power Laser Sci. Eng., 7, e40 (2019).

    Article  Google Scholar 

  57. S. Rubin and Y. Fainman, Adv. Photon., 1, 066003 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxing Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Luo, T., Fang, B. et al. Terahertz Dual-Band Near-Zero Effective Index Metamaterial Based on Double-Sided Metal Microstructure. J Russ Laser Res 42, 586–597 (2021). https://doi.org/10.1007/s10946-021-09997-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09997-8

Keywords

Navigation