Skip to main content
Log in

Generation and Control of Bipartite Entanglement in a Correlated Spontaneous-Emission Laser

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Bipartite quantum entanglement has numerous practical applications in quantum computation and communication. Here, we study the temporal evolution of bipartite entanglement of a two-mode Gaussian state at the output of a correlated spontaneous-emission laser. The lasing medium is coupled with a strong classical field and two quantized modes of the cavity field, which are initially considered in two arbitrary single-mode Gaussian states. The influence of various parameters of the system on the bipartite entanglement of the two-mode Gaussian state is analyzed in detail. In presence of the cavity damping rates, we show that the amount and the time evolution of entanglement increases with the nonclassicality of the initial states. However, the purity of the initial states shows the absence of obvious effects on the entanglement dynamics. Further, the time interval of entanglement enhances with the Rabi frequency of the classical pump field. In addition, the photon number statistics of the two evolved modes of the cavity field is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podol’sky, and N. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  Google Scholar 

  3. S. L. Braunstein and P. V. Look, Rev. Mod. Phys., 77, 513 (2005).

    Article  ADS  Google Scholar 

  4. H. S. Qureshi, S. Ullah, and F. Ghafoor, Sci. Rep., 8, 16288 (2018).

    Article  ADS  Google Scholar 

  5. J. I. Cirac and P. Zoller, Phys. Rev. Lett., 74, 4091 (1995).

    Article  ADS  Google Scholar 

  6. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett., 80, 869 (1998).

    Article  ADS  Google Scholar 

  7. H. S. Qureshi, S. Ullah, and F. Ghafoor, J. Phys. B: At. Mol. Opt. Phys., 53, 135501 (2020).

    Article  ADS  Google Scholar 

  8. K. Azuma, K. Tamaki, and H. K. Lo, Nat. Commun., 6, 6787 (2015).

    Article  ADS  Google Scholar 

  9. M. Hillery, Phys. Rev. A, 61, 022309 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature, 409, 490 (2001).

    Article  ADS  Google Scholar 

  11. S. L. Braunstein and H. J. Kimble, Phys. Rev. A, 61, 042302 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys. Rev. Lett., 76, 4656 (1996).

    Article  ADS  Google Scholar 

  13. P. Loock and A. Furusawa, Phys. Rev. Lett., 67, 052315 (2003).

    Google Scholar 

  14. S. Ullah, H. S. Qureshi, G. Tiaz, and F. Ghafoor, Appl. Opt., 58, 197 (2019).

    Article  ADS  Google Scholar 

  15. D. Ayehu, J. Russ. Laser Res., 42, 136 (2021).

    Article  Google Scholar 

  16. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys., 73, 565 (2001).

    Article  ADS  Google Scholar 

  17. H. J. Kimble and D. F. Walls, J. Opt. Soc. Am. B, 4, 1449 (1987).

    Article  ADS  Google Scholar 

  18. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, Phys. Rev. Lett., 90, 043601 (2003).

    Article  ADS  Google Scholar 

  19. V. D’Auria, S. Fornaro, A. Porzio, et al., Phys. Rev. Lett., 102, 020502 (2009).

    Article  ADS  Google Scholar 

  20. S. B. Zheng, Phys. Rev. Lett., 69, 055801 (2004).

    ADS  Google Scholar 

  21. L. A. Wu, H. J. Kimble, H. J. Hall, and H. Wu, Phys. Rev. Lett., 57, 2520 (1986).

    Article  ADS  Google Scholar 

  22. J. Laurat, T. Coudreau, G. Keller, et al., Phys. Rev. A, 70, 042315 (2004).

    Article  ADS  Google Scholar 

  23. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 84, 2722 (2000).

    Article  ADS  Google Scholar 

  24. R. Simon, Phys. Rev. Lett., 84, 2726 (2000).

    Article  ADS  Google Scholar 

  25. M. Hillery and M. S. Zubairy, Phys. Rev. Lett., 96, 050503 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. L. Hu, Z. Liao, and M. S. Zubairy, Phys. Rev. A, 95, 012310 (2017).

    Article  ADS  Google Scholar 

  27. H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett., 94, 023601 (2005).

    Article  ADS  Google Scholar 

  28. S. Qamar, H. Xiong, and M. S. Zubairy, Phys. Rev. A, 75, 062305 (2007).

    Article  ADS  Google Scholar 

  29. W. Shi, W. Hu, and F. Wang, J. Phys. B: At. Mol. Opt. Phys., 42, 165506 (2009).

    Article  ADS  Google Scholar 

  30. H. T. Tan, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. Lett., 72, 022305 (2005).

    Google Scholar 

  31. S. Ullah, H. S. Qureshi, and F. Ghafoor, Opt. Express, 27, 26858 (2019).

    Article  ADS  Google Scholar 

  32. L. Zhou, H. Xiong, and M. S. Zubairy, Phys. Rev. A, 74, 022321 (2006).

    Article  ADS  Google Scholar 

  33. M. Kiffner, M. S. Zubairy, J. Evers, and C. H. Keitel, Phys. Rev. A, 75, 033816 (2007).

    Article  ADS  Google Scholar 

  34. S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, Phys. Rev. A, 77, 062308 (2008).

    Article  ADS  Google Scholar 

  35. H. S. Qureshi, S. Ullah, and F. Ghafoor, Appl. Opt., 59, 2701 (2020).

    Article  ADS  Google Scholar 

  36. S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, J. Phys. B: At. Mol. Opt. Phys., 41, 145504 (2008).

    Article  ADS  Google Scholar 

  37. S. Qamar, M. Al-Amri, S. Qamar, and M. S. Zubairy, Phys. Rev. A, 80, 033818 (2009).

    Article  ADS  Google Scholar 

  38. M. Meschede, H. Walther, and G. Muller, Phys. Rev. Lett., 54, 551 (1985).

    Article  ADS  Google Scholar 

  39. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, London (1997), Ch. 14.

  40. A. P. Fang, Y. L. Chen, F. L. Li, et al., Phys. Rev. A, 81, 012323 (2010).

    Article  ADS  Google Scholar 

  41. L. H. Rong, F. L. Li, and Y. Yang, Chinese Phys., 15, 2947 (2006).

    Article  ADS  Google Scholar 

  42. C. T. Lee, Phys. Rev. A, 44, R2775 (1991).

    Article  ADS  Google Scholar 

  43. M. G. A. Paris, F. Illuminati, A. Serafini, and S. De Siena, Phys. Rev. A, 68, 012314 (2003).

    Article  ADS  Google Scholar 

  44. S. Ullah, H. S. Qureshi, and F. Ghafoor, Appl. Opt., 58, 7014 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakir Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, H.S., Ullah, S. & Ghafoor, F. Generation and Control of Bipartite Entanglement in a Correlated Spontaneous-Emission Laser. J Russ Laser Res 42, 501–511 (2021). https://doi.org/10.1007/s10946-021-09988-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09988-9

Keywords

Navigation