Skip to main content
Log in

Influence of Microbial Agglomerated Particles on the Performance of Free-Space Quantum Communication

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Quantum satellite communication has advantages of reliability and unconditional safety; it is very important in the field of national military security. When quantum signals are transmitted over a free-space channel, various environmental factors will unavoidably influence quantum communication performance, such as clouds, aerosol particles, and rainfall. However, up to now, research on the impact of bioaerosols on the performance of quantum satellite communication in free space has not been carried out. Therefore, in this work, we experimentally simulate the fractal structure of microbial agglomerated particles by a cluster–cluster model. Since microbial agglomerated particles are suspending in the air, they have an energy-absorbing effect on quantum light signals, which is called the extinction effect. We calculate the extinction efficiency factors by discrete dipole approximation. Based on the particle-size distribution function and the extinction coefficient of microbial agglomerated particles, we respectively establish relationships between the particle concentration, quantum link attenuation, channel capacity, and channel survival functions, as well as bit error rates for the bit-flip channel and the depolarized channel. Our simulation results show that different concentrations of microbial agglomerated particles have different effects on the performance of quantum communication, which provide a reference for the adjustment of quantum communication parameters in microbial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Villoresi, T. Jennewein, F. Tamburini, et. al., New J. Phys., 10, 033038 (2008).

    Article  ADS  Google Scholar 

  2. J. Yin, J. G. Ren, H. Lu, et. al., Nature, 7410, 488 (2012).

    Google Scholar 

  3. J. Yin, Y. Cao, H. L. Yong, et. al., Phys. Rev. Lett., 110, 260407 (2013).

    Article  ADS  Google Scholar 

  4. A. Muller, J. Breguet, and N. Gisin, Europhys. Lett., 23, 383 (1993).

    Article  ADS  Google Scholar 

  5. J. Yin, Y. H. Li, S. K. Liao, et. al., Nature, 7813, 501 (2020).

    Article  ADS  Google Scholar 

  6. M. Nie, J. M. Ren, G. Yang, et. al., Acta Photon. Sin., 45, 0927004 (2016) [in Chinese].

    Article  Google Scholar 

  7. J. Ren, M. Nie, G. Yang, and C. X. Pei, Acta Photon. Sin., 44, 146 (2015) [in Chinese].

    Google Scholar 

  8. X. Z. Zhang, X. Xu, and B. Y. Liu, Acta Opt. Sin., 40, 165 (2020) [in Chinese].

    Google Scholar 

  9. M. C. Feng, L. Xu, M. G. Gao, et. al., Spectroscopy and Spectral Analysis, 32, 3193 (2012) [in Chinese].

    Google Scholar 

  10. X. Y. Zhao, Y. H. Hu, Y. L. Gu, and L. Li, Acta Opt. Sin., 35, 222 (2015) [in Chinese].

    Google Scholar 

  11. H. Zhao and X. Y. Zhao, Acta Opt. Sin., 16, 112 (2018) [in Chinese].

    Google Scholar 

  12. X. Chen, Y. H. Hu, Y. L. Gu, et. al., Infrared Laser Eng., 48, 34 (2019) [in Chinese].

    Google Scholar 

  13. C. Li and H. Xiong, Comput. Phys. Commun., 185, 3424 (2014) [in Chinese].

    Article  ADS  Google Scholar 

  14. M. Lattuada, H. Lattuada, and M. Morbidelli, Chem. Eng. Sci., 59, 4401 (2004).

    Article  Google Scholar 

  15. T. Kozasa, J. Blum, and T. Mukai, Astron. Astrophys., 263, 423 (1992).

    ADS  Google Scholar 

  16. Y. X. Xie, W. F. Luo, and H. Q. Li, World Sci.-Tech. Res. Dev., 26, 24 (2004) [in Chinese].

    Google Scholar 

  17. C. J. Huang, Z. S. Wu, Y. F. Liu, and S. M. Liu, Acta Opt. Sin., 33, 0129001 (2013) [in Chinese].

    Article  Google Scholar 

  18. V. Lucarini, J. J. Saarinen, and K. E. Peiponen, Kramers–Kronig Relations in Optical Meterials Research, Springer, Berlin, Heidelberg (2005), p. 9.

    Google Scholar 

  19. Y. Feng, “The characteristic of fog extinction in express way and impact on traffic safety,” Changán University, Xián (2009), p. 64 [in Chinese].

    Google Scholar 

  20. H. Yin and H. X. Ma, Introduction to Quantum Communication in Military, Military Science Press, Beijing (2006), p. 227 [in Chinese].

    Google Scholar 

  21. M. Nie, J. Ren, G. Yang, et. al., Acta Phys. Sin.–Ch. Ed., 64, 150301 (2015) [in Chinese].

    Google Scholar 

  22. X. Pei, Quantum Communication, Xidian University Press, Xián (2013) p. 118 [in Chinese].

  23. L. Zhang, M. Nie, and X. H. Liu, Acta Phys. Sin.–Ch. Ed., 62, 150301 (2013) [in Chinese].

    Google Scholar 

  24. M. A. Nielsen and I. L. Chuang, Quantum Computing and Quantum Information [translated by D. Z. Zheng and Q. Zhao, Tsinghua University Press, Beijing (2005), p. 57].

  25. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, arXiv:2003.06557 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, L. & Zhai, M. Influence of Microbial Agglomerated Particles on the Performance of Free-Space Quantum Communication. J Russ Laser Res 42, 473–483 (2021). https://doi.org/10.1007/s10946-021-09985-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09985-y

Keywords

Navigation