Skip to main content
Log in

A New ADE-TLM for Lorentz Dispersive Medium

  • Published:
Journal of Russian Laser Research Aims and scope

This article has been updated

Abstract

We present a new numerical algorithm for the simulation of dispersive media. This model named ADE-TLM is based on the transmission line modeling method with the symmetrical condensed node (SCN-TLM) and novel voltage sources and exploits the polarization current density J along with the voltage electric as well as the average approximation. We extend the proposed algorithm to media with dispersions described by multiple second-order Lorentz poles; the obtained results of the reflection and transmission coefficients are compared with analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 12 March 2021

    The original version of this paper was updated to correct incorrect data in html: ADE-TLM should be ADE-TLM, SCN-TLM should be SCN-TLM.

References

  1. P. B. Johns, IEEE Trans. Microwave Theor. Tech., 35, 370 (1987).

    Article  ADS  Google Scholar 

  2. J. Paul, C. Christopoulos, and D. W. P. Thomas, IEEE Trans. Antennas Propag., 47, 1528 (1999).

    Article  ADS  Google Scholar 

  3. M. Iben Yaich, M. Khalladi, I. Zekik, and J. A. Morente, IEEE Microw. Wireless Compon. Lett., 12, 293 (2002).

    Article  Google Scholar 

  4. S. El Adraoui, M. Khalid, A. Zugari, et al., Optik, 125, 276 (2014).

    Article  ADS  Google Scholar 

  5. K. Mounirh, S. El Adraoui, M. Charif, et al., Optik, 126, 1479 (2015).

    Article  ADS  Google Scholar 

  6. R. Abrini, M. Iben Yaich, and M. Khalladi, IEICE Electron. Express, 4, 492 (2007).

    Article  Google Scholar 

  7. H. El Faylali, M. Iben Yaich, and M. Khalladi, Int. J. Emerg. Trends Electric, Electron., 5, 119 (2013).

  8. K. Mounirh, S. El Adraoui, Y. Ekdiha, et al.. Prog. Electromag. Res., 64, 157 (2018).

  9. D. F. Kelley and R. J. Luebbers, IEEE Trans. Antennas Propag., 44, 792 (1996).

    Article  ADS  Google Scholar 

  10. M. Khalladi and M. Iben Yaich, IEICE Electron. Express, 2, 373 (2005).

    Article  Google Scholar 

  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House, Norwood, UK, (2005).

  12. J. Paul, C. Christopoulos, and D. W. P. Thomas, IEEE Trans. Antennas Propag., 47, 1528 (1999).

    Article  ADS  Google Scholar 

  13. R. J. Luebbers and F. Hunsberger, IEEE Trans. Antennas Propag., 40, 1297 (1992).

    Article  ADS  Google Scholar 

  14. H. W. Yang, Optik, 124, 1199 (2013).

    Article  ADS  Google Scholar 

  15. C. A. Balanis, Advanced Engineering Electromagnetics, Wiley, New York (1989).

    Google Scholar 

  16. H. Jin and R. Vahldieck, IEEE Trans. Microw. Theor. Tech., 42, 2554 (1994).

    Article  ADS  Google Scholar 

  17. C. Christopoulos, The Transmission-Line Modeling Method (TLM), IEEE Series on Electromagnetic Wave Theory, New York (1995).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Attalhaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attalhaoui, A., Bezzout, H., Habibi, M. et al. A New ADE-TLM for Lorentz Dispersive Medium. J Russ Laser Res 42, 237–242 (2021). https://doi.org/10.1007/s10946-021-09956-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09956-3

Keywords

Navigation