Skip to main content
Log in

Generation of a 532 nm Hollow Beam by Adjusting the Superposition Area of TEM01 and TEM10 Modes by Spherical Aberration of the Thermal Lens

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The existence of the spherical aberration of the thermal lens in the crystal has a certain regulatory effect on the distribution of laser modes. In this paper, using the impact of this aberration on the superposition area of TEM01 and TEM10 modes, we carry out an experimental study of a 1064 nm hollow beam and its nonlinear frequency conversion providing a 532 nm hollow beam. Using a plano-concave cavity structure, under 21.92 W pump power at 808 nm, a 1064 nm hollow beam with an output power of 4.01 W is generated. Based on this result, a 532 nm hollow beam with an output power of 1.08 W is obtained by intracavity frequency doubling with type I phase matching in an LBO crystal. The conversion efficiency is 26.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Stein, IEEE J. Quantum Electron., 10, 427 (1974).

    Article  ADS  Google Scholar 

  2. Y. Lumer, I. Moshe, S. Jackel, and A. Meir, J. Opt. Soc. Am. B, 27, 1337 (2010).

    Article  ADS  Google Scholar 

  3. Z. Zhao, Y. Dong, S. Pan, et al., Chin. J. Lasers, 37, 2409 (2010).

    Article  Google Scholar 

  4. V. Magni, Appl. Opt., 25, 2039 (1986).

    Article  ADS  Google Scholar 

  5. S. De Silvestri, P. Laporta, and V. Magni, Opt. Commun., 59, 43 (1986).

    Article  ADS  Google Scholar 

  6. C. Liu, J. H. Ge, Z. Xiang, and J. Chen, Acta Phys. Sin., 57, 1704 (2008).

    Google Scholar 

  7. Z. Zhao, S. Pan, Z. Xiang, et al., Opt. Express, 20, 10605 (2012).

    Article  ADS  Google Scholar 

  8. R. M. Herd and J. S. Dover, Dermatol. Clin., 15, 355 (1997).

    Article  Google Scholar 

  9. J. Frauchiger and H. P. Weber, Proc. SPIE, 1865, 74 (1993).

    Article  ADS  Google Scholar 

  10. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun., 112, 321 (1994).

    Article  ADS  Google Scholar 

  11. A. Jesacher, C. Maurer, A. Schwaighofer, et al., Opt. Express, 16, 2597 (2008).

    Article  ADS  Google Scholar 

  12. N. Gonzlez, G. Molina-Terriza, and J. P. Torres, Opt. Express, 14, 9093 (2006).

    Article  ADS  Google Scholar 

  13. L. Carbone, C. Bogan, P. Fulda, et al., Phys. Rev. Lett., 110, 251101 (2013).

    Google Scholar 

  14. Z. Rong, C. Kuang, Y. Fang, et al., Opt. Commun., 354, 71 (2015).

    Article  ADS  Google Scholar 

  15. T. H. Kim, J. S. Park, J. W. Kim, et al., J. Korean Phys. Soc., 75, 557 (2019).

    Article  ADS  Google Scholar 

  16. D. Pohl, Appl. Phys. Lett., 20, 266 (1972).

    Article  ADS  Google Scholar 

  17. Y. Kozawa and S. Sato, Opt. Lett., 30, 3063 (2005).

    Article  ADS  Google Scholar 

  18. G. Machavariani, Y. Lumer, I. Moshe, et al., Appl. Opt., 46, 3304 (2007).

    Article  ADS  Google Scholar 

  19. K. Yonezawa, Y. Kozawa, and S. Sato, Jpn. J. Appl. Phys., 46, 5160 (2014).

    Article  ADS  Google Scholar 

  20. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, Opt. Lett., 32, 3272 (2007).

    Article  ADS  Google Scholar 

  21. Chr. Tamm and C. O. Weiss, J. Opt. Soc. Am. B, 7, 1034 (1990).

    Article  ADS  Google Scholar 

  22. G. A. Turnbull, D. A. Robertson, G. M. Smith, et al., Opt. Commun., 127, 183 (1996).

    Article  ADS  Google Scholar 

  23. M. V. Berry, J. Opt. A: Pure Appl. Opt., 5, 259 (2004).

    Article  ADS  Google Scholar 

  24. S. P. Chard, P. C. Shardlow, and M. J. Damzen, Appl. Phys. B: Lasers Opt., 97, 275 (2009).

    Article  ADS  Google Scholar 

  25. X. Huang, B. Xu, and S. Cui, IEEE J. Sel. Top. Quantum Electron., 24, 1 (2018).

    Google Scholar 

  26. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, Phys. Rev. A, 54, R3742 (1996).

    Article  ADS  Google Scholar 

  27. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, Phys. Rev. A, 56, 4193 (1997).

    Article  ADS  Google Scholar 

  28. W. T. Buono, L. F. C. Moraes, J. A. O. Huguenin, et al., New J. Phys., 16, 093041 (2014).

    Google Scholar 

  29. Z. Y. Zhou, D. S. Ding, Y. K. Jiang, et al., Opt. Express, 22, 20298 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Yong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jin, GY., Dong, Y. et al. Generation of a 532 nm Hollow Beam by Adjusting the Superposition Area of TEM01 and TEM10 Modes by Spherical Aberration of the Thermal Lens. J Russ Laser Res 42, 75–81 (2021). https://doi.org/10.1007/s10946-020-09931-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09931-4

Keywords

Navigation