Skip to main content
Log in

Laser-Induced Real-Time Dynamics of Water Pentamer

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study the earliest steps in the radiolysis of a water pentamer in an intense, 800 nm, linearlypolarized fs laser field [I = (0.1 50) 1014 W/cm2] through a real-space, real-time implementation of time-dependent density functional theory nonadiabatically coupled to molecular dynamics. The ionization is enhanced with increasing laser intensity, resulting in the continuous emergence of higher charge states and an increase in the ionization ratio of the deepest levels. Two different reaction pathways of the water pentamer are presented by analyzing the degree of ionization, the level depletion, the probabilities of ionic states, the time-resolved electron density, the bond lengths, and the vibrational frequencies. Both pathways exhibit fluctuations and rearrangement dynamics of the hydrogen bonding network under irradiation. The cyclic structure of the pentamer formed via five oxygen ions is distorted and opened after ionization and tends to maintain a hydronium H3O+ configuration. Proton transfer is accompanied by an oxygen–oxygen contraction and the first proton transfer rate ranges over 6–22 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ball, Nature, 452, 291 (2008); www.nature.com/articles/452291a

    Article  ADS  Google Scholar 

  2. V. Garbuio, M. Cascella, and O. Pulci, J. Phys. Condens. Matter, 21, 033101 (2009); DOI:https://doi.org/10.1088/0953-8984/21/3/033101

    Article  ADS  Google Scholar 

  3. P. L. Geissler, C. Dellago, D. Chandler, et al., Science, 291, 2121 (2001); science.sciencemag.org/content/291/5511/2121

  4. O. F. Mohammed, D. Pines, J. Dreyer, et al., Science, 310, 83 (2005); science.sciencemag.org/content/310/5745/83

  5. D. G. Wang, R. G. Li, J. Zhu, et al., J. Phys. Chem. C, 116, 5082 (2012); DOI:https://doi.org/10.1021/jp210584b

    Article  Google Scholar 

  6. M. C. Bellissent-Funel, A. Hassanali, M. Havenith, et al., Chem. Rev., 116, 7673 (2016); DOI:https://doi.org/10.1021/acs.chemrev.5b00664

    Article  Google Scholar 

  7. E. Lee, A. Kundu, J. Jeon, and M. Cho, J. Chem. Phys., 151, 114705 (2019); DOI:https://doi.org/10.1063/1.5120456

    Article  ADS  Google Scholar 

  8. F. Jin, M. Wei, C. B. Liu, and Y. C. Ma, Phys. Chem. Chem. Phys., 19, 21453 (2017); DOI:https://doi.org/10.1039/C7CP01798G

    Article  Google Scholar 

  9. Y. Yamamoto and T. Suzuki, J. Phys. Chem. Lett., 11, 5510 (2020); DOI:https://doi.org/10.1021/acs.jpclett.0c01468

    Article  Google Scholar 

  10. R. S. MacTaylor and A. W. Jr. Castleman, J. Atmos. Chem., 36, 23 (2000); DOI:https://doi.org/10.1023/A:1006376914390

    Article  Google Scholar 

  11. R. Ludwig, Angew. Chem. Int. Ed., 40, 1808 (2001); DOI:10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1

  12. K. Liu, J. D. Cruzan, and R. J. Saykally, Science, 271, 929 (1996); science.sciencemag.org/content/271/5245/62

  13. S. S. Xantheas, and T. H. Jr. Dunning, J. Chem. Phys., 99, 8774 (1993); DOI:https://doi.org/10.1063/1.465599

    Article  ADS  Google Scholar 

  14. K. Mizuse, J. L. Kuo, and A. Fujii, Chem. Sci., 2, 868 (2011); DOI:https://doi.org/10.1039/c0sc00604a

    Article  Google Scholar 

  15. L. Belau, K. R. Wilson, S. R. Leone, and M. Ahmed, J. Phys. Chem. A, 111, 10075 (2007); DOI:https://doi.org/10.1021/jp075263v

    Article  Google Scholar 

  16. B. B. Zhang, Y. Yu, Z. J. Zhang, et al., J. Phys. Chem. Lett., 11, 851 (2020); DOI:https://doi.org/10.1021/jp962761n

    Article  Google Scholar 

  17. F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernestain, J. Chem. Phys., 124, 224319 (2006); DOI:https://doi.org/10.1063/1.2202314

    Article  ADS  Google Scholar 

  18. H. T. Liu, J. P. Müller, and M. Beutler, J. Chem. Phys., 134, 094305 (2011); DOI:https://doi.org/10.1063/1.3556820

    Article  Google Scholar 

  19. D. D. Kang, J. Y. Dai, Y. Hou, and J. M. Yuan, J. Chem. Phys., 133, 014302 (2010); DOI:https://doi.org/10.1063/1.3462278

    Article  ADS  Google Scholar 

  20. O. Svoboda, M. Oncák, and P. Slavícek, J. Chem. Phys., 135, 154301 (2011); DOI:https://doi.org/10.1063/1.3649942

    Article  ADS  Google Scholar 

  21. T. L. Xu, X. Bin, S. R. Kirk, et al., Int. J. Quantum Chem., 120, e26124 (2019); DOI:https://doi.org/10.1002/qua.26124

    Article  Google Scholar 

  22. W. T. S. Cole and R. J. Saykally, J. Chem. Phys., 147, 064301 (2017); DOI:https://doi.org/10.1063/1.4973418

    Article  ADS  Google Scholar 

  23. F. Ramírez, C. Z. Hadad, D. Guerra, et al., Chem. Phys. Lett., 507, 229 (2011); DOI:https://doi.org/10.1016/j.cplett.2011.03.084

    Article  ADS  Google Scholar 

  24. P. Suwannakham, S. Chaiwongwattana, and K. Sagarik, RSC Adv., 8, 36731 (2018); DOI:https://doi.org/10.1039/c8ra06095a

    Article  ADS  Google Scholar 

  25. V. Svoboda, R. Michiels, A. C. LaForge, et al., Sci. Adv., 6, eaaz0385 (2020); advances.sciencemag.org/content/6/3/eaaz0385.full

  26. F. Calvayrac, P. G. Reinhard, E. Suraud, and C. A. Ullrich, Phys. Rep., 337, 493 (2000); DOI:https://doi.org/10.1016/S0370-1573(00)00043-0

    Article  ADS  Google Scholar 

  27. Th. Fennel, K. H. Meiwes-Broer, J. Tiggesbáumker, et al., Rev. Mod. Phys., 82, 1793 (2010); DOI:https://doi.org/10.1103/RevModPhys.82.1793

    Article  ADS  Google Scholar 

  28. Z. P. Wang, P. M. Dinh, P. G. Reinhard, et al., Int. J. Mass. Spectrom., 285, 143 (2011); DOI:https://doi.org/10.1016/j.ijms.2009.05.008

    Article  Google Scholar 

  29. U. F. Ndongmouo-Taffoti, P. M. Dinh, P. G. Reinhard, et al., Eur. Phys. J. D, 58, 131 (2010); DOI:https://doi.org/10.1140/epjd/e2010-00055-2

    Article  ADS  Google Scholar 

  30. M. P. Gaigeot, P. Lopez-Tarifa, F. Martin, et al., Mutation Res.-Rev. Mutation Res., 704, 45 (2010); DOI:https://doi.org/10.1016/j.mrrev.2010.01.004

    Article  Google Scholar 

  31. Z. P. Wang, P. M. Dinh, P. G. Reinhard, and E. Suraud, Laser Phys., 24, 106004 (2014); DOI:https://doi.org/10.1088/1054-660X/24/10/106004

    Article  ADS  Google Scholar 

  32. Z. P. Wang, Y. M. Wu, X. M. Zhang, and C. Lu, Chin. Phys. B, 22, 073301 (2013); DOI:https://doi.org/10.1088/1674-1056/22/7/073301

    Article  ADS  Google Scholar 

  33. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992); DOI:https://doi.org/10.1103/PhysRevB.45.13244

    Article  ADS  Google Scholar 

  34. C. Legrand, E. Suraud, and P. G. Reinhard, J. Phys. B, 35, 1115 (2002); DOI:https://doi.org/10.1088/0953-4075/35/4/333

    Article  ADS  Google Scholar 

  35. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B, 54, 1703 (1996); DOI:https://doi.org/10.1103/physrevb.54.1703

    Article  ADS  Google Scholar 

  36. M. A. L. Marques and E. K. U. Gross, Ann. Rev. Phys. Chem., 55, 427 (2004); DOI:https://doi.org/10.1146/annurev.physchem.55.091602.094449

    Article  ADS  Google Scholar 

  37. F. Calvayrac, P. G. Reinhard, and E. Suraud, Ann. Phys. (NY), 255, 125 (1997); DOI:https://doi.org/10.1006/aphy.1996.5654

    Article  ADS  Google Scholar 

  38. C. A. Ullrich, J. Mol. Struct.: THEOCHEM, 501-502, 315 (2000); DOI:https://doi.org/10.1016/S0166-1280(99)00442-X

    Article  Google Scholar 

  39. www-wales.ch.cam.ac.uk/CCD.html

  40. P. G. Reinhard and E. Suraud, Introduction to Cluster Dynamics, Wiley, New York (2003).

    Book  Google Scholar 

  41. S. Gräf, W. Mohr, and S. Leutwyler, J. Chem. Phys., 110, 7893 (1999); DOI:https://doi.org/10.1063/1.478695

    Article  ADS  Google Scholar 

  42. R. N. Barnett and U. Landman, J. Phys. Chem. A, 101, 164 (1997); DOI:https://doi.org/10.1021/jp962761n

    Article  Google Scholar 

  43. M. Wei, F. Jin, T. W. Chen, and Y. C. Ma, J. Chem. Phys., 148, 224302 (2018); DOI:https://doi.org/10.1063/1.5031083

    Article  ADS  Google Scholar 

  44. L. V. Keldysh, Sov. Phys. JETP, 20, 1307 (1965); www.jetp.ac.ru/cgi-bin/e/index/e/20/5/p1307?a=list

    MathSciNet  Google Scholar 

  45. H. Tachikawa and T. Takada, Chem. Phys., 475, 9 (2016); DOI:https://doi.org/10.1016/j.chemphys.2016.05.024

    Article  Google Scholar 

  46. H. M. Lee and K. S. Kim, J. Chem. Theory Comput., 5, 976 (2009); DOI:https://doi.org/10.1021/ct800506q

    Article  Google Scholar 

  47. J. M. Headrick, E. G. Diken, R. S. Walters, et al., Science, 308, 1765 (2005); science.sciencemag.org/content/308/5729/1765

  48. G. E. Douberly, R. S. Walters, J. Cui, et al., J. Phys. Chem. A, 114, 4570 (2010); DOI:https://doi.org/10.1021/jp100778s

    Article  Google Scholar 

  49. Z. L. Lv, K. Xu, Y. Cheng, et al., J. Chem. Phys., 141, 054309 (2014); DOI:https://doi.org/10.1063/1.4891721

    Article  ADS  Google Scholar 

  50. T. F. Stetina, S. C. Sun, D. B. Lingerfelt, et al., J. Phys. Chem. Lett., 10, 3694 (2019); DOI:https://doi.org/10.1021/acs.jpclett.9b01062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, F., Xu, X. et al. Laser-Induced Real-Time Dynamics of Water Pentamer. J Russ Laser Res 42, 53–65 (2021). https://doi.org/10.1007/s10946-020-09929-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09929-y

Keywords

Navigation