Skip to main content
Log in

Analytical Approach to the Theory of X-Ray Observation of Pores in Bulk Materials

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We analytically study the problem of pore detection and certification in bulk objects by means of radiography. For an absorbent sample, the optimum thickness for pore imaging and detection is expressed in terms of the linear attenuation coefficient of the material. This can be used to maximize the signal-to-noise ratio by tuning the photon energy of the incident monochromatic beam. The problem is more complicated for transparent objects. An evident approach is radiography in coherent beams; in this case, we use a simple model allowing to find the field structure of the transmitted beam on the backside of the sample and beyond in the outer half space in terms of few dimensionless parameters, including the Fresnel number F = a2/λz, where a is the pore radius, λ is the wavelength, z is the distance from the back side of the sample to the detector, and the phase number Φ = akδ, with k = 2π/λ and δ being the bulk material decrement. The detailed analysis of this field structure is performed that can be used to find the optimum position of a detector revealing the pores parameters from the intensity distribution measured. We present the numerical results for a Gaussian type of the pore shape function and provide the software to calculate the space field structure for other pore shape functions. The stationary phase method in higher orders, used here to simplify the Fresnel integral, can be applied to extend the obtained results to 3D geometry. The suggested qualitative picture of the formation of images of pores as phase objects complements modern methods of monitoring porous-sensitive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nagai, C. S. Musgrave, and W. Nazarov, Phys. Plasmas, 25, 030501 (2018).

    Article  ADS  Google Scholar 

  2. G. L. Messing and A. J. Stevenson, Science, 322, 383 (2008).

    Article  Google Scholar 

  3. J. Rouquerol and K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Application, Academic Press, London (1999).

    Google Scholar 

  4. S. Lowell, J. E. Shields, M. A. Thomas, et al., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, New York (2004).

    Book  Google Scholar 

  5. L. M. Anovitz and D. R. Cole, Rev. Mineral. Geochem., 80, 61 (2015).

    Article  Google Scholar 

  6. Yu. B. Melnichenko, Structural Characterization of Porous Materials Using SAS, Small-Angle Scattering from Confined and Interfacial Fluids, Springer, Switzerland (2016), pp. 139–171.

    Google Scholar 

  7. C. Jacobson, X-Ray Microscopy, Cambridge University Press (2020).

    Google Scholar 

  8. S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, Materials, 5, 937 (2012).

    Article  ADS  Google Scholar 

  9. F. Pfeiffer, Nat. Photon., 12, 9 (2018).

    Article  ADS  Google Scholar 

  10. E. Tsai, J. Billaud, D. F. Sanchez, et al., Science, 11, 356 (2019).

    Google Scholar 

  11. D. Paganin, Coherent X-Ray Optics, Oxford Series on Synchrotron Radiation, Oxford University Press (2006).

    Book  Google Scholar 

  12. D. M. Paganin and D. Pelliccia, “Tutorials on X-ray Phase Contrast Imaging: Some Fundamentals and Some Conjectures on Future Developments,” https://arxiv.org/abs/1902.00364 (2019).

  13. A. Snigirev, I. Snigireva, V. Kohn, et al., Rev. Sci. Instrum., 66, 5486 (1995).

    Article  ADS  Google Scholar 

  14. T. S. Argunova and V. G. Kohn, Phys. Usp., 62, 602 (2019).

    Article  ADS  Google Scholar 

  15. J. Rodenburg and A. Maiden, “Ptychography,” in: P. W. Hawkes and J. C. H. Spence (Eds.), Springer Handbook of Microscopy, Springer Handbooks, Springer Nature, Switzerland (2019).

    Google Scholar 

  16. N. L. Popov, I. A. Artyukov, A. V. Vinogradov, et al., Usp. Phyz. Nauk, 190, 766 (2020).

    Article  Google Scholar 

  17. I. Schelokov, T. Weitkamp, and A. Snigirev, Opt. Commun., 213, 247 (2002).

    Article  ADS  Google Scholar 

  18. [http://77.51.206.116:65000/fiber_web/x-ray_porosimetry.aspx].

  19. The Quest for Quantitative Microscopy, Nat. Meth., 9, 627 (2012); https://doi.org/10.1038/nmeth.2102.

  20. A. Erdelyi, Asymptotic Expansions, Dover (2012).

    Google Scholar 

  21. A. Papoulis, Systems and Transforms with Applications in Optics, Krieger Pub., Malabar, USA (1981).

    MATH  Google Scholar 

  22. F. W. J. Olver, Introduction to Asymtotics and Special Functions, Academic Press, New York (1974).

    Google Scholar 

  23. V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society (1990), Ch. 1.

  24. M. V. Fedoryuk, Method of Steepest Descent [in Russian], URSS Publishing Co., Moscow (2015).

    Google Scholar 

  25. N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, Benjamin/Cummings Pub., London (1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Popov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schelokov, I.A., Popov, N.L. & Vinogradov, A.V. Analytical Approach to the Theory of X-Ray Observation of Pores in Bulk Materials. J Russ Laser Res 42, 32–44 (2021). https://doi.org/10.1007/s10946-020-09927-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09927-0

Keywords

Navigation