Skip to main content
Log in

Investigation of Factors Affecting the Radiation Intensity of Quantum Wells

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study the possibilities of increasing the light-emission intensity of quantum wells. We describe the influence of the quantum-well width and the effective mass of charge carriers on the radiation intensity. Since the formation of negatively charged layers near the quantum well can increase the photon emission, we propose to form the charged layers with the use of ion implantation. The results of the study can be implemented in the field of quantum-size light-emitting structures and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Zory Jr., P. F. Liao, and P. Kelley, Quantum Well Lasers, Academic Press, San-Diego, USA (1993).

    Google Scholar 

  2. M. H. Francombe and J. L. Vossen, Homojunction and Quantum-Well Infrared Detectors, Academic Press, San-Diego, USA (1995).

    Google Scholar 

  3. J. P. Loehr, Physics of Strained Quantum Well Lasers, Springer, New-York, USA (1998).

    Book  Google Scholar 

  4. B. R. Nag, Physics of Quantum Well Devices, Springer, New-York, USA (2001).

    Google Scholar 

  5. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications, Springer-Verlag, Berlin, Heidelberg (2007).

    Google Scholar 

  6. K. Hessa, B. A. Vojak, N. Holonyak, et al., Solid State Electron., 23, 585 (1980).

    Article  ADS  Google Scholar 

  7. C. L. Felix, J. R. Meyer, I. Vurgaftman, et al., IEEE Photon. Technol. Lett., 9, 734 (1997).

    Article  ADS  Google Scholar 

  8. N. L. Bazhenov, K. D. Mynbaev, V. I. Ivanov-Omskii, et al., Semiconductors, 39, 1210 (2005).

    Article  ADS  Google Scholar 

  9. T.-C. Chiang, Surface Sci. Rep., 39, 181 (2000).

    Article  ADS  Google Scholar 

  10. M. Fox and R. Ispaso, Springer Handbook of Electronic and Photonic Materials, Springer, Cham, Switzerland (2017) p. 1037.

    Google Scholar 

  11. P. Blood, E. D. Fletcher, P. J. Hulyer, and P. M. Smowton, Appl. Phys. Lett., 48, 1111 (1986).

    Article  ADS  Google Scholar 

  12. D. F. Nelson, R. C. Miller, D. A. Kleinman, and A. C. Gossard, Phys. Rev. B, 34, 8671 (1986).

    Article  ADS  Google Scholar 

  13. G. Hoffmann and R. Berndt, Phys. Rev. Lett., 90, 046803 (2003).

    Article  ADS  Google Scholar 

  14. M. C. Nuss, P. C. M. Planken, I. Brener, et al., Appl. Phys. B, 58, 249 (1994).

    Article  ADS  Google Scholar 

  15. S. Flugge, Practical Quantum Mechanics, Springer, Berlin, Germany (1998).

    MATH  Google Scholar 

  16. W. A. Trzeciakowski, Sensors Actuators A: Phys., 41, 247 (1994).

    Article  Google Scholar 

  17. W. A. Trzeciakowski, Metrologia, 30, 695 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergo Rekhviashvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekhviashvili, S., Boyko, A. Investigation of Factors Affecting the Radiation Intensity of Quantum Wells. J Russ Laser Res 42, 20–24 (2021). https://doi.org/10.1007/s10946-020-09925-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09925-2

Keywords

Navigation