Skip to main content
Log in

Localized Optical Lattices Generated by Quadrupole Interaction

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Electric quadrupole interactions are normally weak but are shown capable of being exploited once the neutral atom interacts at near resonance. The physical model used here is based on evanescent Hermite–Gaussian light in a vacuum being total-internally reflected at the planar surface of a dielectric. The resulting optical quadrupole potential distribution is restricted to a subwavelength region near the interface outside the dielectric and interacts with any neutral atom approaching it. Conditions that completely prevent dipole interactions but allow quadrupole interactions facilitate lateral optical manipulations of atoms along the interface by the formation of a localized two-dimensional surface of an optical lattice. Such lattices can be used to form an appropriate architecture to implement quantum operations using neutral atoms and ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Loudon, The Quantum Theory of Light, 3rd ed, Oxford Science, New York (2000).

  2. C. Cohen-Tannoudji and D. Gury-Odelin, Advances in Atomic Physics: An Overview, World Scientific, Singapore (2011).

  3. V. Lembessis and M. Babiker, Phys. Rev. Lett., 110, 083002 (2013).

    Article  ADS  Google Scholar 

  4. S. Al-Awfi, J. Korean Phys. Soc., 64, 1110 (2014).

    Article  ADS  Google Scholar 

  5. S.-M. Hu, H. Pan, C.-F. Cheng, et al., Astrophys. J., 749, 76 (2012).

    Article  ADS  Google Scholar 

  6. S. Tojo, M. Hasuo, and T. Fujimoto, Phys. Rev. Lett., 92, 053001 (2004).

    Article  ADS  Google Scholar 

  7. A. M. Kern and O. J. F. Martin, Phys. Rev. A, 85, 022501 (2012).

    Article  ADS  Google Scholar 

  8. A. M. Kern and O. J. F. Martin, Nano Lett., 11, 482 (2011).

    Article  ADS  Google Scholar 

  9. V. V. Klimov and V. S. Letokhov, Phys. Rev. A, 54, 4408 (1996).

    Article  ADS  Google Scholar 

  10. T. Esslinger, M. Weidenmüller, A. Hammerich, and T. W. Hänch, Opt. Lett., 18, 450 (1993).

    Article  ADS  Google Scholar 

  11. J. P. Dowling and J. Gea-Banacloche, Adv. At. Mol. Opt. Phy., 37, 1 (1997).

    ADS  Google Scholar 

  12. C. Bennett, J. Kirk, and M. Babiker, Phys. Rev. A, 63, 033405 (2001).

    Article  ADS  Google Scholar 

  13. Baohua Jia, Xiaosong Gan, and Min Gu, Opt. Express, 16, 15191 (2008).

    Article  ADS  Google Scholar 

  14. L. C. Thomson, G. Whyte, M. Mazilu, and J. Courtial, J. Opt. Soc. Am. B, 25, 849 (2008).

    Article  ADS  Google Scholar 

  15. Djenan Ganic, Xiaosong Gan, and Min Gu, Opt. Express, 12, 5533 (2004).

    Article  ADS  Google Scholar 

  16. S. Al-Awfi, S. Bougouffa, and M. Babiker, Opt. Commun., 283, 1022 (2009).

    Article  ADS  Google Scholar 

  17. P. B. Blakie and J. V. Porto, Phys. Rev. A, 69, 013603 (2004).

    Article  ADS  Google Scholar 

  18. J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Phys. Rev. A, 73, 033605 (2006).

    Article  ADS  Google Scholar 

  19. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys., 80, 885 (2008).

    Article  ADS  Google Scholar 

  20. C. Sias, H. Lignier, Y. P. Singh, et al., Phys. Rev. Lett., 100, 040404 (2008).

    Article  ADS  Google Scholar 

  21. Q. Beaufils, G. Tackmann, X. Wang, et al., Phys. Rev. Lett., 106, 213002 (2011).

    Article  ADS  Google Scholar 

  22. E. Hinds, Adv. At. Mol., Opt. Phys., 28, 237 (1991).

  23. V. E. Lembessis, M. Babiker, and D. L. Andrews, Phys. Rev. A, 79, 011806 (R) (2009).

  24. S. Al-Awfi, Indian J. Phys., 89, 539 (2015).

    Article  ADS  Google Scholar 

  25. J. Kirk, C. Bennett, M. Babiker, and S. Al-Awfi, Phys. Low. Dim. Struct., 3/4, 127 (2002).

  26. A. Canaguier-Durand and C. Genet, Phys. Rev. A, 90, 023842 (2014)

    Article  ADS  Google Scholar 

  27. Yanning Yin, Supeng Xu, Tao Li, et al., Sci. Rep., 7, 7788 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Al-Awfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Awfi, S. Localized Optical Lattices Generated by Quadrupole Interaction. J Russ Laser Res 41, 119–128 (2020). https://doi.org/10.1007/s10946-020-09857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09857-x

Keywords

Navigation