Skip to main content
Log in

Ultrastable Laser System for Spectroscopy of the 1.14 μm Inner-Shell Clock Transition in Tm and Its Absolute Frequency Measurement

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We characterize a 1.14 μm ultrastable semiconductor laser system for precision spectroscopy of Tm inner-shell clock transition using a frequency comb. We stabilize both the repetition and the carrierenvelope offset frequencies of a commercial Ti : sapphire femtosecond laser to a passive hydrogen maser using a home-built f-2f interferometer. By measuring the absolute frequency of the 1.14 μm laser stabilized to a high-finesse ULE cavity, we determine the zero-expansion temperature point of the cavity and the rate of linear drift of the the cavity resonance frequency due to “aging” of the ULE glass. We achieve less than 10 Hz frequency instability of the laser within 1,000 s after the linear drift compensation. We also measured the absolute frequency of the 1.14 μm transition in Tm to be 262 954 938 269 213(30) Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Ludlow, M. M. Boyd, J. Ye, et al., Rev. Mod. Phys., 87, 637 (2015).

    Article  ADS  Google Scholar 

  2. N. Poli, C. Oates, Gill, and G. Tino, “Optical atomic clocks” arXiv:1401.2378, vol 1.

  3. J. Chen, S. Brewer, C. Chou, et al., Phys. Rev. Lett., 118, 053002 (2017).

    Article  ADS  Google Scholar 

  4. M. Schioppo, R. C. Brown, W. F. McGrew, et al., Nature Photon., 11, 48 (2017).

    Article  ADS  Google Scholar 

  5. N. Huntemann, C. Sanner, B. Lipphardt, et al., Phys. Rev. Lett., 116, 063001 (2016).

    Article  ADS  Google Scholar 

  6. D. Sukachev, S. Fedorov, I. Tolstikhina, et al., Phys. Rev. A, 94, 022512 (2016).

    Article  ADS  Google Scholar 

  7. A. Golovizin, E. Fedorova, D. Tregubov, et al., Nature Commun., 10, 1724 (2019).

    Article  ADS  Google Scholar 

  8. J. Alnis, A. Matveev, N. Kolachevsky, et al., Phys. Rev. A, 77, 1 (2008).

    Article  Google Scholar 

  9. T. Udem, J. Reichert, R. Holzwarth, and T. Hansch, Opt. Lett., 24, 881 (1999).

    Article  ADS  Google Scholar 

  10. X. Xie, R. Bouchand, D. Nicolodi, et al., Nature Photon., 11, 44 (2017).

    Article  ADS  Google Scholar 

  11. M. T. Murphy, T. Udem, R. Holzwarth, et al., Mon. Not. R. Astron. Soc., 847, 380 (2007).

    Google Scholar 

  12. R. A. Probst, G. L. Curto, G. Avila, et al., “A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS,” in: Ground-Based and Airborne Instrumentation for Astronomy V, SPIE Proc., 9147, 9147C (2014).

  13. A. Cingöz, D. C. Yost, T. K. Allison, et al., Nature, 482, 7383, 68 (2012).

    Article  ADS  Google Scholar 

  14. A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, et al., Nature Commun., 8, 44 (2017).

    Article  ADS  Google Scholar 

  15. S. Okubo, K. Iwakuni, H. Inaba, et al., Appl. Phys. Express, 8, 082402 (2015).

    Article  ADS  Google Scholar 

  16. N. Picqué and T.W. Hänsch, Nature Photon., 13, 146 (2019).

    Article  ADS  Google Scholar 

  17. D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science, 288, 5466, 635 (2000).

    Article  ADS  Google Scholar 

  18. K. W. Holman, R. J. Jones, A. Marian, et al., IEEE J. Sel. Top. Quantum Electron., 9, 1018 (2003).

    Article  ADS  Google Scholar 

  19. R. W. P. Drever, J. L. Hall, F. Kowalski, et al., Appl. Phys. B: Lasers Opt., 105, 97 (1983).

    Article  ADS  Google Scholar 

  20. D. W. Allan, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 34, 647 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bushmakin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovizin, A., Bushmakin, V., Fedorov, S. et al. Ultrastable Laser System for Spectroscopy of the 1.14 μm Inner-Shell Clock Transition in Tm and Its Absolute Frequency Measurement. J Russ Laser Res 40, 540–546 (2019). https://doi.org/10.1007/s10946-019-09835-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-019-09835-y

Keywords

Navigation