Skip to main content
Log in

High-Power Chaotic Green Laser Beam Generated by Perturbing a 520 nm Laser Diode with Optical Feedback

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We designed a compact and efficient high-power laser that generates chaotic green light by perturbing a 520 nm laser diode with optical feedback. This achieved a continuous output power of 30 mW with a bandwidth of more than 1 GHz and an electrical-to-green conversion efficiency of 6.25%. All possible chaotic states were demonstrated for different diode-driving currents and feedback intensities. The FWHM and the peak side-lobe level (PSL) are affected by the injection current and feedback intensity. The FWHM increases with increasing feedback intensity, and the PSL increases with both injection current and feedback intensity. The compact chaotic laser could be used in underwater detection to suppress backscattering because of its intrinsic intensity modulation at high frequency. We finally found the optimum range of chaotic states for underwater detection, for which the ratio of input current to threshold current is 1.5 : 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Rumbaugh, E. M. Bollt, and W. D. Jemison, Oceans, 40, 933957 (2013).

    Google Scholar 

  2. D. W. Illig, L. K. Rumbaugh, M. K. Banavar, et al., Oceans, 43, 933957 (2015).

    Google Scholar 

  3. L. K. Rumbaugh, M. K. Banavar, and W. D. Jemison, Proc. SPIE, 9459, ?? (2015).

  4. L. J. Mullen, and V. M. Contarino, IEEE Microwave Mag., 1, 42 (2000).

    Article  Google Scholar 

  5. F. Pellen, V. Jezequel, and G. Zion, Appl. Opt., 51, 7690 (2012).

    Article  ADS  Google Scholar 

  6. L. Mullen, B. Cochenour, W. Rabinovich, et al., Appl. Opt., 48, 328 (2009).

    Article  ADS  Google Scholar 

  7. F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron., 10, 991 (2014).

    Article  Google Scholar 

  8. K. Myneni, T. A. Barr, B. R. Reed, et al., Appl. Phys. Lett, 78, 1496 (2001).

    Article  ADS  Google Scholar 

  9. T. B. Simpson, J. M. Liu, A. Gavrielides, et al., Appl. Phys. Lett, 64, 3539 (1994).

    Article  ADS  Google Scholar 

  10. J. Mork, B. Tromborg, and J. Mark, IEEE J. Quantum Electron., 28, 93 (1992).

    Article  ADS  Google Scholar 

  11. F. Y. Lin and J. M. Liu, J. Quantum Electron., 40, 815 (2004).

    Article  ADS  Google Scholar 

  12. M. T. Zhang, J. Z. Zhang, and J. G. Zhang, Laser Optoelectron. Process., 53, 051402 (2016).

    Article  Google Scholar 

  13. R. Zhang, H. L. Cavalcante, G. Zheng, et al., Phys. Rev. E, 80, 045202 (2009).

    Article  ADS  Google Scholar 

  14. F. Pellen, X. Intes, and P. Olivard, J. Phys. D: Appl. Phys, 33, 349 (2000).

    Article  ADS  Google Scholar 

  15. L. Mullen, A. Laux, and B. Cochenour, Appl. Opt., 48, 2607 (2009).

    Article  ADS  Google Scholar 

  16. J. Z. Li, Handbook of Optics, Shanxi Science and Technology Press (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmin Shen.

Additional information

Manuscript submitted by the authors in English on April 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Guo, Z., Wang, B. et al. High-Power Chaotic Green Laser Beam Generated by Perturbing a 520 nm Laser Diode with Optical Feedback. J Russ Laser Res 40, 259–264 (2019). https://doi.org/10.1007/s10946-019-09799-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-019-09799-z

Keywords

Navigation