Skip to main content
Log in

Using Laser Measuring and SFM Algorithm for Fast 3D Reconstruction of Objects

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Effective measurement of the reflective or transparent surface of an object has always been a disadvantage in laser scanning modeling. We propose a fast and complete three-dimensional (3D) reconstruction method for small static objects using laser scanning and the structure from motion (SFM) algorithm. Meanwhile, a complete reconstruction workflow is designed and a multi-angle 3d reconstruction system is set up. To generate the complete point cloud model of the object, the SFM algorithm is used to reconstruct the surface part of the object, the data for which cannot be obtained by the laser measuring instrument. The experimental results show that this method not only improves the speed, accuracy, integrity, and visual effect of 3D reconstruction of small objects, but also extends the scope of 3D reconstruction of laser measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. B. Tong, B. Z. Han, D. L. Wang, et al., J. Russ. Laser Res., 34, 307 (2003).

    Google Scholar 

  2. M. A. Fonstad, J. T. Dietrich, B. C. Courville, et al., Earth Surf. Process. Landforms, 38, 421 (2013).

    Article  ADS  Google Scholar 

  3. L. Humbert, D. Hampf, P. Wagner, et al., CEAS Space J., 8, 1 (2015).

    Google Scholar 

  4. K. Konolige, J. Augenbraun, N. Donaldson, et al., “A low-cost laser distance sensor,” contribution to the IEEE International Conference on Robotics and Automation, Washington (2008).

  5. M. A. Selver, E. Y. Zoral, B. Belenlioglu, and Y. Soyaslan, “Interpolating and denoising point cloud data for computationally efficient environment modeling,” contribution to the IEEE International Conference on Intelligent Rail Transportation, Birmingham (2016).

  6. D. G. Lowe, Int. J. Comput. Vis., 60, 91 (2004).

    Article  Google Scholar 

  7. M. Korn, M. Holzkothen, and J. Pauli, “Color supported generalized-ICP,” contribution to the IEEE International Conference on Computer Vision Theory and Applications, New York (2015).

  8. S. D. Billings, E. M. Boctor, and R. H. Taylor, PloS One, 10, e0117688 (2015).

    Article  Google Scholar 

  9. D. M. A. Latif, A. M. Salem, H. Ramadan, et al., “Comparison of 3D feature registration techniques for indoor mapping,” Int. Conf. Comput. Eng. Syst., 8255, 239 (2013).

    Google Scholar 

  10. J. Park, Q. Y. Zhou, and V. Koltun, “Colored point cloud registration revisited,” contribution to the IEEE International Conference on Computer Vision, IEEE Computer Society (2017), p. 143.

  11. B. Curless and M. A. Levoy, “Volumetric method for building complex models from range images,” contribution to the Conference on Computer Graphics and Interactive Techniques ACM, New York (1996).

  12. P. S. Inn, B. Halil, H. Ding, et al., PloS One, 11, e0157940 (2016).

    Article  Google Scholar 

  13. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings of IEEE 6th International Conference on Computer Vision (ICCV), New York (1998).

  14. C. S. Fraser, Photogram. Eng. Remote Sens., 79, 381 (2013).

    Article  Google Scholar 

  15. M. I. A. Lourakis and A. A. Argyros, ACM Trans. Math. Software, 36, 1(2009).

    Article  MathSciNet  Google Scholar 

  16. R. I. Hartley, “In defense of the eight-point algorithm,” Proceedings of IEEE 8th International Conference on Computer Vision (ICCV), 19, 580(1997).

  17. Y. Furukawa and J. Ponce, IEEE Trans. Pattern Anal. Mach. Intell., 32, 1362 (2010).

    Article  Google Scholar 

  18. V. S. Gorelik, P. P. Sverbil’, A. B. Fadyushin, et al., J. Russ. Laser Res., 25, 1 (2004).

    Article  Google Scholar 

  19. N. Mellado, N. J. Mitra, and D. Aiger, Comput. Graphics Forum, 33, 205 (2014).

    Article  Google Scholar 

  20. J. Chen, L. Wang, Z. Liu, et al., Microsyst. Technol., 23, 3301 (2017).

    Article  Google Scholar 

  21. H. Z. Li, H. L. Shen, and C. Cheng, J. Comput. Applications, 32, 12 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., He, Y., Li, Q. et al. Using Laser Measuring and SFM Algorithm for Fast 3D Reconstruction of Objects. J Russ Laser Res 39, 591–599 (2018). https://doi.org/10.1007/s10946-018-9756-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9756-7

Keywords

Navigation