Trajectory-Based Interpretation of Laser Light Diffraction by a Sharp Edge


In the diffraction pattern produced by a half-plane sharp edge when it obstructs the passage of a laser beam, two characteristic regions are noticeable. There is a central region, where the diffraction of laser light appears in the region of geometric shadow, while intensity oscillations are observed in the non-obstructed area. On both sides of the edge, there are also very long light traces along the normal to the edge of the obstacle. The theoretical explanation of this phenomenon is based on the Fresnel–Kirchhoff diffraction theory applied to the Gaussian beam propagation behind the obstacle. In this paper, we supplement this explanation by considering electromagnetic flow lines, which provide a more complete interpretation of the phenomenon in terms of electric and magnetic fields and flux lines; at the same time, that can be related to average photon paths.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. Bohm and B. J. Hiley, The Undivided Universe, Routledge, New York (1993).

    MATH  Google Scholar 

  2. 2.

    M. D. Davidović, Á. S. Sanz, D. Arsenović, et al., Phys. Scr., T135, 014009 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Á. S. Sanz, M. D. Davidović, M. Božić, and S. Miret-Artés, Ann. Phys., 325, 763 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    K. Y. Bliokh, A. Y. Bekshaev, A. G. Kofman, and F. Nori, New J. Phys., 15, 073022 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    M. D. Davidović, Á. S. Sanz, M. Božić, et al., Phys. Scr., T153, 014015 (2013).

    Google Scholar 

  6. 6.

    M. Gondran and A. Gondran, Am. J. Phys., 78, 598 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    M. Božić, M. Davidović, T. I. Dimitrova, et al., J. Russ. Laser Res., 31, 117 (2010).

    Article  Google Scholar 

  8. 8.

    M. D. Davidović and M. D. Davidović, Acta Phys. Pol. A, 116, 672 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Á. S. Sanz, J. Campos-Martínez, and S. Miret-Artés, J. Opt. Soc. Am. A, 29, 695 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Yu. E. Geints and A. A. Zemlyanov, Phys. Rev. A, 98, 023846 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    S. Kocsis, B. Braverman, S. Ravets, et al., Science, 332, 1170 (2011).

    ADS  Article  Google Scholar 

  12. 12.

  13. 13.

    A. Sommerfeld, Math. Ann., 47, 134 (1896).

    Article  Google Scholar 

  14. 14.

    A. Sommerfeld, Optics, Academic Press, New York (1969).

    Google Scholar 

  15. 15.

    M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York (1986).

    Google Scholar 

  16. 16.

    J. E. Pearson, T. C. McGill, S. Kurtin, and A. Yariv, J. Opt. Soc. Am., 59, 1440 (1969).

    ADS  Article  Google Scholar 

  17. 17.

    A. C. Green, H. L. Bertoni, and L. B. Felsen, J. Opt. Soc. Am., 69, 1503 (1979).

    ADS  Article  Google Scholar 

  18. 18.

    G. A. Suedan and E. V. Jull, J. Electromagn. Waves Appl. 3, 17 (1989).

    ADS  Article  Google Scholar 

  19. 19.

    G. A. Suedan and E. V. Jull, Comput. Phys. Commun., 68, 346 (1991).

    ADS  Article  Google Scholar 

  20. 20.

    S. P. Anakhov, R. A. Lymarenko, and A. E. Khizhnyak, Radiophys. Quantum Electron., 47, 926 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    I. Aviani and B. Erjavec, Phys. Educ., 46, 134 (2011).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mirjana Božić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davidović, M.D., Davidović, M.D., Sanz, A.S. et al. Trajectory-Based Interpretation of Laser Light Diffraction by a Sharp Edge. J Russ Laser Res 39, 438–447 (2018).

Download citation


  • Diffraction on the half-plane
  • Bohmian mechanics
  • Gaussian beam
  • electromagnetic energy flow lines