Skip to main content
Log in

A Possible Time-Dependent Generalization of the Bipartite Quantum Marginal Problem

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this work, we study an inverse dynamical problem for a bipartite quantum system governed by the time local master equation: to find the class of generators which give rise to a certain time evolution with the constraint of fixed reduced states (marginals). The compatibility of such choice with a global unitary evolution is considered. For the nonunitary case, we propose a systematic method to reconstruct examples of master equations and address them to different physical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Glaser, Eur. Phys. J. D, 69, 22 (2015).

    Article  Google Scholar 

  2. S. G. Schirmer, H. Fu, and A. I. Solomon, Phys. Rev. A, 63, 063410 (2001).

    Article  ADS  Google Scholar 

  3. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control, Cambridge University Press (2009).

  4. C. Altafini and F. Ticozzi, IEEE Trans. Autom. Control, 57, 1898 (2012).

    Article  Google Scholar 

  5. M. Walter, B. Doran, D. Gross, and M. Christandl, Science, 340, 1205 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Schilling, C. L. Benavides-Riveros, and P. Vrana, Phys. Rev. A, 96, 052312 (2017).

    Article  ADS  Google Scholar 

  7. R. Chakraborty and D. A. Mazziotti, Phys. Rev. A, 91, 010101 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. G. Schirmer, “Hamiltonian engineering for quantum systems,” in: Proceedings of the 3rd IFAC Workshop on Lagrangian and Hamiltonian Methods in Nonlinear Control (Nagoya, Japan, 2006).

  9. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2006).

  10. J. Bernatska and A. Messina, Phys. Scr., 85, 015001 (2012).

    Article  ADS  Google Scholar 

  11. J. Bernatska and P. Holod, in: Proceedings of the 9th International Conference “Geometry, Integrability and Quantization (Sofia, 2008), p. 146.

  12. D. Chruściński, Open Syst. Inform. Dyn., 21, 1440004 (2014).

    Article  Google Scholar 

  13. A. Rivas and S. F. Huelga, Open Quantum Systems: An Introduction, Springer, Berlin (2011).

    MATH  Google Scholar 

  14. A. A. Klyachko, J. Phys. Conf. Ser., 36, 72 (2006).

    Article  ADS  Google Scholar 

  15. C. Schilling, Quantum Marginal Problem and Its Physical Relevance, PhD Thesis at ETH Zurich (2014).

  16. A. Sawicki, M. Walter, and M. Kuś, J. Phys. A: Math. Gen., 46, 5 (2013).

    Google Scholar 

  17. E. Brüning, H. Mäkelä, A. Messina, and F. Petruccione, J. Mod. Opt., 59, 1 (2012).

    Article  ADS  Google Scholar 

  18. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Second Edition, Oxford University Press (1995).

  19. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Springer, Berlin (1987).

    MATH  Google Scholar 

  20. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys., 17, 821 (1976).

    Article  ADS  Google Scholar 

  21. G. Lindblad, Comm. Math. Phys., 48, 119 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  22. U. Fano, Rev. Mod. Phys., 55, 855 (1983).

    Article  ADS  Google Scholar 

  23. G. Kimura, Phys. Lett. A, 314, 339 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Luo, Phys. Rev. A, 77, 042303 (2008).

    Article  ADS  Google Scholar 

  25. R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press (2013).

  26. B. Hall, Lie Groups, Lie Algebras, and Representations, An Elementary Introduction, Second Edition , Springer, Heidelberg (2015).

  27. S. C. Hou, X. X Yi, S. X. Yu, and C. H. Oh, Phys. Rev. A, 83, 062115 (2011).

    Article  ADS  Google Scholar 

  28. H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett., 103, 210401 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Chruściński, A. Kossakowski, and A. Rivas, Phys. Rev. A, 83, 052128 (2011).

    Article  ADS  Google Scholar 

  30. V. Buzek, Phys. Rev. A, 58, 1723 (1998).

    Article  ADS  Google Scholar 

  31. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Baio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baio, G., Chruściński, D. & Messina, A. A Possible Time-Dependent Generalization of the Bipartite Quantum Marginal Problem. J Russ Laser Res 39, 422–437 (2018). https://doi.org/10.1007/s10946-018-9737-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9737-x

Keywords

Navigation