Skip to main content
Log in

Quantum Evolution beyond the Markovian Semigroup — Generalizing the Stenholm–Barnett Approach

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We provide conditions for the memory kernel governing the time-nonlocal quantum master equation which guarantee that the corresponding dynamical map is completely positive and trace-preserving. This approach gives rise to the new parametrization of dynamical maps in terms of two completely positive maps – so-called legitimate pair. In fact, these new parameterizations are a natural generalization of Markovian semigroup. Interestingly our class contains recently studied models like semi-Markov evolution and collision models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2007).

    Google Scholar 

  2. U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore (2000).

    Google Scholar 

  3. Á. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction, Springer Briefs in Physics, Springer (2011).

  4. E. B. Davies, Commun. Math. Phys., 39, 91 (1974).

    Article  ADS  Google Scholar 

  5. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys., 17, 821 (1976).

    Article  ADS  Google Scholar 

  6. G. Lindblad, Commun. Math. Phys., 48, 119 (1976).

    Article  ADS  Google Scholar 

  7. D. Chruściński and S. Pascazio, Open. Sys. Inf. Dyn., 24, 1740001 (2017).

    Article  Google Scholar 

  8. Á. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys., 77, 094001 (2014).

    Article  ADS  Google Scholar 

  9. H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys., 88, 021002 (2016).

    Article  ADS  Google Scholar 

  10. I. de Vega and D. Alonso, Rev. Mod. Phys., 89, 015001 (2017).

    Article  ADS  Google Scholar 

  11. Li Li, M. J. W. Hall, and H. M. Wiseman, “Concepts of quantum non-Markovianity: A hierarchy,” arXiv:1712.08879.

  12. S. Nakajima, Prog. Theor. Phys., 20, 948 (1958).

  13. R. Zwanzig, J. Chem. Phys., 33, 1338 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. M. Barnett and S. Stenholm, Phys. Rev. A, 64, 033808 (2001).

    Article  ADS  Google Scholar 

  15. S. Maniscalco, Phys. Rev. A, 72, 024103 (2005).

    Article  ADS  Google Scholar 

  16. A. A. Budini, Phys. Rev. A, 69, 042107 (2004).

    Article  ADS  Google Scholar 

  17. A. Shabani and D. A. Lidar, Phys. Rev. A, 71, 020101(R) (2005).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Campbell, A. Smirne, L. Mazzola, et al., Phys. Rev. A, 85, 032120 (2012).

    Article  ADS  Google Scholar 

  19. S. Maniscalco and F. Petruccione, Phys. Rev. A, 73, 012111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Wilkie, Phys. Rev. E, 62, 8808 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Wilkie and Y. M. Wong, J. Phys. A: Math. Theor., 42, 015006 (2009).

    Article  ADS  Google Scholar 

  22. A. Kossakowski and R. Rebolledo, Open Sys. Inf. Dyn., 14, 265 (2007).

    Article  Google Scholar 

  23. A. Kossakowski and R. Rebolledo, Open Sys. Inf. Dyn., 16, 259 (2009).

    Article  Google Scholar 

  24. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  25. H.-P. Breuer and B. Vacchini, Phys. Rev. Lett., 101, 140402 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  26. H.-P. Breuer and B. Vacchini, Phys. Rev. E, 79, 041147 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Vacchini, A. Smirne, E.-M. Laine, et al., New J. Phys., 13, 093004 (2011).

    Article  ADS  Google Scholar 

  28. F. A. Wudarski, P. Należyty, G. Sarbicki, and D. Chruściński, Phys. Rev. A 91, 042105 (2015).

    Article  ADS  Google Scholar 

  29. B. Vacchini, Phys. Rev. Lett., 117, 230401 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Chruściński and A. Kossakowski, Europhys. Lett., 97, 20005 (2012).

    Article  ADS  Google Scholar 

  31. D. Chruściński and A. Kossakowski, Phys. Rev. A, 94, 020103(R) (2016).

    Google Scholar 

  32. D. Chruściński and A. Kossakowski, Phys. Rev. A, 95, 042131 (2017).

    Article  ADS  Google Scholar 

  33. K. Siudzińska and D. Chruściński, Phys. Rev. A, 96, 022129 (2017).

    Google Scholar 

  34. F. Ciccarello, G. M. Palma, and V. Giovannetti, Phys. Rev. A, 87, 040103(R) (2013).

    Google Scholar 

  35. W. K. Wootters and B. D. Fields, Ann. Phys., 191, 363 (1989).

    Article  ADS  Google Scholar 

  36. M. Nathanson and M.B Ruskai, J. Phys. A: Math. Theor., 40, 8171 (2007).

    Article  ADS  Google Scholar 

  37. D. Chruściński and K. Siudzińska, Phys. Rev. A, 94, 022118 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Chruściński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chruściński, D. Quantum Evolution beyond the Markovian Semigroup — Generalizing the Stenholm–Barnett Approach. J Russ Laser Res 39, 325–339 (2018). https://doi.org/10.1007/s10946-018-9726-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9726-0

Keywords

Navigation