Skip to main content
Log in

High-Gain Nanosecond Vortex Laser

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate a high-gain vortex power amplifier with the double-pass configuration based on the rod Nd:YAG crystal. In the experiments, a nanosecond vortex seed beam is converted from a conventional Q-switched Nd:YAG laser output with a spiral phase plate and then amplified with the Nd:YAG amplifier stage. A maximum amplification output energy up to 163.5 mJ is achieved at 20 Hz with a 3.2-ns pulse, corresponding to an amplification factor of 81.8. Further discussions are provided to find ways of increasing the power scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Yao and M. J. Padgett, Adv. Opt. Photon., 3, 161 (2011).

    Article  Google Scholar 

  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A, 45, 8185 (1992).

    Article  ADS  Google Scholar 

  3. M. Padgett and R. Bowman, Nat. Photon., 5, 343 (2011).

    Article  ADS  Google Scholar 

  4. D. G. Grier, Nature, 424, 810 (2003).

    Article  ADS  Google Scholar 

  5. S. Bretschneider, C. Eggeling, and S. W. Hell, Phys. Rev. Lett., 98, 218103 (2007).

    Article  ADS  Google Scholar 

  6. T. Watanabe, Y. Iketaki, T. Omatsu, et al., Chem. Phys. Lett., 371, 634 (2003).

    Article  ADS  Google Scholar 

  7. G. Gibson, J. Courtial, M. J. Padgett, et al., Opt. Express, 12, 5448 (2004).

    Article  ADS  Google Scholar 

  8. Y. Liu, C. Gao, X. Qi, and H. Weber, Opt. Express, 16, 7091 (2008).

    Article  ADS  Google Scholar 

  9. T. Omatsu, K. Chujo, K. Miyamoto, et al., Opt. Express, 18, 17967 (2010).

    Article  ADS  Google Scholar 

  10. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, Phys. Rev. A, 54, 3742 (1996).

    Article  ADS  Google Scholar 

  11. M. Koyama, T. Hirose, M. Okida, et al., Opt. Express, 19, 14420 (2011).

    Article  ADS  Google Scholar 

  12. T. Yusufu, Y. Tokizane, K. Miyamoto, and T. Omatsu, Opt. Express, 21, 23604 (2013).

    Article  ADS  Google Scholar 

  13. M. Koyama, T. Hirose, M. Okida, et al., Opt. Express, 19, 994 (2011).

    Article  ADS  Google Scholar 

  14. Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, Opt. Express, 17, 14362 (2009).

    Article  ADS  Google Scholar 

  15. D. J. Kim, J. W. Kim, and W. A. Clarkson, Appl. Phys. B, 117, 459 (2014).

    Article  ADS  Google Scholar 

  16. X. Chen, C. Chang, Z. Lin, et al., IEEE Photon. Tech. Lett., 28, 1271 (2016).

    Article  ADS  Google Scholar 

  17. M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, Appl. Phys. B, 116, 249 (2014).

    Article  ADS  Google Scholar 

  18. N. Apurv Chaitanya, A. Aadhi, M. V. Jabir, and G. K. Samanta, Opt. Lett., 40, 2614 (2015).

    Article  ADS  Google Scholar 

  19. Y. Li, Z. Zhou, D. Ding, and B. Shi, J. Opt. Soc. Am. B, 32, 407 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Song, Z., Huang, X. et al. High-Gain Nanosecond Vortex Laser. J Russ Laser Res 39, 275–279 (2018). https://doi.org/10.1007/s10946-018-9718-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9718-0

Keywords

Navigation