Skip to main content
Log in

Quantum-Secured Data Transmission in Urban Fiber-Optics Communication Lines

  • Published:
Journal of Russian Laser Research Aims and scope


Quantum key distribution (QKD) provides theoretic information security in communication based on the laws of quantum physics. In this work, we report an implementation of quantum-secured data transmission in the infrastructure of Sberbank of Russia in standard communication lines in Moscow. The experiment is realized on the basis of already deployed urban fiber-optics communication channels with significant losses. We realize the decoy-state BB84 QKD protocol using the one-way scheme with polarization encoding for generating keys. Quantum-generated keys are then used for continuous key renewal in the hardware devices for establishing a quantum-secured VPN Tunnel between two offices of Sberbank. The hybrid approach used offers possibilities for long-term protection of the transmitted data; it is promising for integrating in the already existing information security infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. B. Schneier, Applied Cryptography, John Wiley, New York (1996).

    MATH  Google Scholar 

  2. P. W. Shor, SIAM J. Comput., 26, 1484 (1997).

    Article  MathSciNet  Google Scholar 

  3. L. K. Grover, in: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (New York, USA, 1996), p. 212.

  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys., 74, 145 (2002).

    Article  ADS  Google Scholar 

  5. H.-K. Lo, M. Curty, and K. Tamaki, Nat. Photon., 8, 595 (2014).

    Article  ADS  Google Scholar 

  6. E. Diamanti, H.-K. Lo, and Z. Yuan, Quantum Inform., 2, 16025 (2016).

    Article  Google Scholar 

  7. W.-Y. Hwang, Phys. Rev. Lett., 91, 057901 (2003).

    Article  ADS  Google Scholar 

  8. H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett., 94, 230504 (2005).

    Article  ADS  Google Scholar 

  9. X.-B. Wang, Phys. Rev. Lett., 94, 230503 (2005).

    Article  ADS  Google Scholar 

  10. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A, 72, 012326 (2005).

    Article  ADS  Google Scholar 

  11. M. Curty, F. Xu, W. Cui, et al., Nat. Commun., 5, 3732 (2014).

    Article  Google Scholar 

  12. C. C. W. Lim, M. Curty, N. Walenta, et al., Phys. Rev. A, 89, 022307 (2014).

    Article  ADS  Google Scholar 

  13. Z. Zhang, Q. Zhao, M. Razavi, and X. Ma, Phys. Rev. A, 95, 012333 (2017).

    Article  ADS  Google Scholar 

  14. A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, Phys. Rev. A, 96, 022316 (2017).

    Article  ADS  Google Scholar 

  15. A. Duplinskiy, V. Ustimchik, A. Kanapin, et al., Opt. Express, 25, 28886 (2017).

    Article  ADS  Google Scholar 

  16. E. O. Kiktenko, N. O. Pozhar, A. V. Duplinskiy, et al., Quantum Electron., 47, 798 (2017).

    Article  ADS  Google Scholar 

  17. Amicon FSPU-IP, [].

  18. E. O. Kiktenko, A. S. Trushechkin, Y. V. Kurochkin, and A. K. Fedorov, J. Phys. Conf. Ser., 741, 012081 (2016).

    Article  Google Scholar 

  19. E. O. Kiktenko, A. S. Trushechkin, C. C. W. Lim, et al., Phys. Rev. Appl., 8, 044017 (2017).

    Article  ADS  Google Scholar 

  20. D. Elkouss, J. Martínez-Mateo, and V. Martin, “Secure rate-adaptive reconciliation,” in: Proceedings of the IEEE International Symposium on Information Theory and its Applications (ISITA), IEEE, Taichung, Taiwan (2010), p. 179.

  21. D. Elkouss, J. Martínez-Mateo, and V. Martin, Quantum Inform. Comput., 11, 226 (2011).

    Google Scholar 

  22. A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, Los Alamos arXiv:1705.06664 (2017).

  23. K. A. Balygin, V. I. Zaitsev, A. N. Klimov, et al., JETP Lett., 105, 606 (2017).

    Article  ADS  Google Scholar 

  24. A. V. Gleim, V. V. Chistyakov, O. I. Bannik, et al., J. Opt. Tech., 84, 362 (2017).

    Article  Google Scholar 

  25. E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, et al., Los Alamos arXiv:1705.09258 (2017).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. K. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duplinskiy, A.V., Kiktenko, E.O., Pozhar, N.O. et al. Quantum-Secured Data Transmission in Urban Fiber-Optics Communication Lines. J Russ Laser Res 39, 113–119 (2018).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: