Skip to main content
Log in

Room-Temperature 2.5 eV Pulsed Cathodoluminescence Band of High-Purity Silicon Dioxide

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study the room-temperature (RT) pulsed cathodoluminescence (PCL) spectra of a set of pure synthetic (both crystalline and amorphous) silicon dioxide samples. We show that the PCL spectra of all samples (both amorphous and crystalline) possess bands with intensity maxima in the region of 487 – 500 nm (2.54 – 2.48 eV). These bands are the most intense in the PCL spectra of disordered materials. We investigate the annealing behavior of RT PCL spectra of the crystalline and amorphous samples. Annealing has no significant effect on this emission. We demonstrate that the surface area of the material plays no role in the emission of PCL bands at 415 and 490 nm in the spectra of α-quartz single crystal and crystalline powder with grain sizes of 10 – 100 μm. Our results show that the bands in the region of 2.5 eV are the universal property of all synthetic pure SiO2 samples. The nature of the SiO2 emission band in the region of 2.5 eV is not clear; we discuss two possible explanations. The first one is based on considering the intrinsic emission due to self-trapped exciton (STE) decay with the transient O-O (oxygen–oxygen) bond formation. The second one is based on the role of Li ions in the emission process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Salh, “Defect related luminescence in silicon dioxide network: A review, crystalline silicon – properties and uses,” in: Sukumar Basu (Ed.), InTech, DOI: 10.5772/22607 (2012).

  2. M. Jacquemet, C. Jacquemet, N. Janel, et al., Appl. Phys. B, 80, 171 (2005).

    Article  ADS  Google Scholar 

  3. H. Kim, W.-S. Choong, N. Eclov, et al., Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE, INSPEC Accession Number: 16356976, DOI: https://doi.org/10.1109/NSSMIC.2015.7582020.

  4. V. Yu. Ivanov, E. S. Shlygin, V. A. Pustovarov, Phys. Solid State, 50, 1692 (2008).

    Article  ADS  Google Scholar 

  5. W. Zhang, J. Wu, G. Zhou, et al., Laser Phys., 26, 035801 (2016).

    Article  ADS  Google Scholar 

  6. A. M. Stoneham, J. Gavartin, A. L. Shluger, et al., J. Phys.: Condens. Matter, 19 255208 (2007).

    ADS  Google Scholar 

  7. B. Perny, P. Eberhard, K. Ramseyer, et al., Am. Mineral., 77, 534 (1992).

    Google Scholar 

  8. J. Gotze, M. Plotze, and D. Habermann, Mineral. Petrol., 71, 225 (2001).

    Article  ADS  Google Scholar 

  9. J. Gotze, Microsc. Microanal., 18, 1270 (2012).

    Article  ADS  Google Scholar 

  10. C. E. Jones and D. Embree, J. Appl. Phys., 47, 5365 (1976).

    Article  ADS  Google Scholar 

  11. A. N. Trukhin and A. E. Plaudis, Fiz. Tverd. Tela, 21, 1109 (1979).

    Google Scholar 

  12. K. Tanimura and L. E. Halliburton, Phys. Rev. B, 34, 2933 (1986).

    Article  ADS  Google Scholar 

  13. C. Itoh, K. Tanimura, and N. Itoh, Phys. C: Solid State Phys., 21, 4693 (1988).

    Article  ADS  Google Scholar 

  14. A. N. Trukhin, Fiz. Tverd. Tela, 33, 2888 (1991).

    Google Scholar 

  15. A. N. Trukhin, J. Phys.: Condens. Matter, 20, 125217 (2008).

    ADS  Google Scholar 

  16. M. Martini, M. Fasoli, A. Galli, et al., J. Lumin., 132, 1030036 (2012).

    Article  Google Scholar 

  17. B. J. Luff, and P. D. Townsend, J. Phys.: Condens. Matter, 2, 8089 (1990).

    ADS  Google Scholar 

  18. V. N. Afanasev, V. B. Bychkov, V. D. Lartsev, Instrum. Exp. Tech., 48, 5, 641 (2005).

    Article  Google Scholar 

  19. G. H. Diecke and F. Heath, Johns Hopkins Spectroscopic Report No. 17, The Johns Hopkins University, Baltimore, MD (1959).

  20. L. Skuja, J. Non-Cryst. Solids, 79, 51 (1994).

    Article  ADS  Google Scholar 

  21. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, Nucl. Instrum. Meth. Phys. Res. B, 286, 159 (2012).

    Article  ADS  Google Scholar 

  22. A. R. West, Solid State Chemistry and Its Applications, Wiley (1984).

  23. K. Kleinknecht, Detektoren für Teilchenstahlung, Teuhner, Stuttgart (1987).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pestovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.A., Kutovoi, S.A., Pestovskii, N.V. et al. Room-Temperature 2.5 eV Pulsed Cathodoluminescence Band of High-Purity Silicon Dioxide. J Russ Laser Res 39, 67–74 (2018). https://doi.org/10.1007/s10946-018-9690-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9690-8

Keywords

Navigation