Skip to main content
Log in

A New First-Order Phase Transition for an Extended Jaynes–Cummings–Dicke Model with a High-Finesse Optical Cavity in the BEC System

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a two-level atomic Bose–Einstein condensate (BEC) with dispersion, which is coupled to a high-finesse optical cavity. We call this model the extended Jaynes–Cummings–Dicke (JC-Dicke) model and introduce an effective Hamiltonian for this system. From the direct product of Heisenberg–Weyl (HW) coherent states for the field and U(2) coherent states for the matter, we obtain the potential energy surface of the system. Within the framework of the mean-field approach, we evaluate the variational energy as the expectation value of the Hamiltonian for the considered state. We investigate numerically the quantum phase transition and the Berry phase for this system. We find the influence of the atom–atom interactions on the quantum phase transition point and obtain a new phase transition occurring when the microwave amplitude changes. Furthermore, we observe that the coherent atoms not only shift the phase transition point but also affect the macroscopic excitations in the superradiant phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev., 93, 99 (1954).

    Article  ADS  Google Scholar 

  2. E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).

    Article  Google Scholar 

  3. A. S. Abdel-Rady, Samia S. A. Hassan, Abdel-Nasser A. Osman, and Ahmed Salah, Int. Mod. Phys B, 31, 12 1750091 (2017).

    Article  ADS  Google Scholar 

  4. A. Klein and E. R. Marshalek, Rev. Mod. Phys., 63, 375 (1991).

    Article  ADS  Google Scholar 

  5. F. Haake, Quantum Signatures of Chaos, Springer, Berlin (2001).

    Book  MATH  Google Scholar 

  6. U. Weiss, Quantum Dissipative Systems, Series of Modern Condensed Matter Physics, World Scientific, Singapore (1993).

  7. K. Hepp and E. H. Lieb, Ann. Phys., 76, 360 (1973).

    Article  ADS  Google Scholar 

  8. K. Hepp and E. H. Lieb, Phys. Rev. A, 8, 2517 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. K. Wang and F. T. Hioes, Phys. Rev. A, 7, 831 (1973).

    Article  ADS  Google Scholar 

  10. M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Science, 269, 198 (1995).

    Article  ADS  Google Scholar 

  11. K. B. Davis, M. -O. Mewes, M. R. Andrews, et al., Phys. Rev. Lett., 75, 3969 (1995).

    Article  ADS  Google Scholar 

  12. J. Larson and M. Lewenstein, New J. Phys., 11, 063027 (2009).

    Article  ADS  Google Scholar 

  13. K. Bauman, C. Guerlin, F. Brennecke, and T. Esslinger, Nature (London), 464, 1301 (2010).

    Article  ADS  Google Scholar 

  14. B. Paredes and J. I. Cirac, Phys. Rev. Lett., 90, 150402 (2003).

    Article  ADS  Google Scholar 

  15. T. Brandes, Phys. Rev. E, 88, 032133 (2013).

    Article  ADS  Google Scholar 

  16. M. A. Bastarrachea-Magnani, S. Lerma-Hernandez, and J. G. Hirsch, Phys. Rev. A, 89, 032101 (2014).

    Article  ADS  Google Scholar 

  17. P. Stransky and P. Cejnar, Phys. Lett. A, 380, 2637 (2016).

    Article  ADS  Google Scholar 

  18. P. Cejnar and P. Stransky, Phys. Scr., 91, 083006 (2016).

    Article  ADS  Google Scholar 

  19. R. Gilmore and L. Narducci, Phys. Rev. A, 17, 1747 (1978).

    Article  ADS  Google Scholar 

  20. R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley, New York (1981).

    MATH  Google Scholar 

  21. H. Eleuch and I. Rotter, Eur. Phys. J. D, 79,14 (2014)

    Google Scholar 

  22. Y. Li, P. Zhang, and Z. Wang, Eur. Phys. J. D, 58, 379 (2010).

    Article  ADS  Google Scholar 

  23. H. B. Zhu and Z. H. Wang, Int. J. Theor. Phys., 55, 183 (2016).

    Article  Google Scholar 

  24. G. Chen, Z. D. Chen, and P. C. Xuan, Eur. Phys. J. D, 39, 453 (2006).

    Article  ADS  Google Scholar 

  25. M. V. Berry, Proc. R. Soc. London, Ser. A, 392, 45 (1984).

    Article  ADS  Google Scholar 

  26. Di Xiao, Ming-Che Chang, and Qian Niu, Rev. Mod. Phys., 82, 3 (1959).

    Google Scholar 

  27. J. Anandan and L. Stodolsky, Phys. Rev. D, 35, 2597 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  28. Peter Levay, Phys. Rev. A, 41, 2837 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  29. D. M. Tong, E. Sjoqvist, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett., 93, 080405 (2004).

    Article  ADS  Google Scholar 

  30. X. Zhang, A. Zhang, and L. Li, Phys. Lett. A, 376, 2090 (2012).

    Article  ADS  Google Scholar 

  31. A. Zhang and F. Li, Phys. Lett. A, 377, 528 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Wu and J. B. Xu, Quantum Inform. Process., 15, 3695 (2016).

    Article  ADS  Google Scholar 

  33. Sheng-Chang Li, Hong-Liang Liu, and Xiao-Yan Zhao, Eur. Phys. J. D, 67, 250 (2013).

    Article  ADS  Google Scholar 

  34. S. Cordero, R. Lopéz-Peña, O. Castaños, and E. Nahmad-Achar, Phys. Rev. A, 87, 023805 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Salah.

Additional information

The numerical results are in full agreement with the results of our paper published in [3] where we studied the same model using a different coherent state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, A., Abdel-Rady, A.S., Osman, AN.A. et al. A New First-Order Phase Transition for an Extended Jaynes–Cummings–Dicke Model with a High-Finesse Optical Cavity in the BEC System. J Russ Laser Res 39, 28–36 (2018). https://doi.org/10.1007/s10946-018-9686-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9686-4

Keywords

Navigation