Skip to main content
Log in

Advantages of STED-Inspired 3D Direct Laser Writing for Fabrication of Hybrid Nanostructures

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a new method of additive laser technology referred to as STED nanolithography technique. This technique provides a means for fabrication of 3D dielectric and plasmonic composite nanostructures. The new technology is of the utmost interest for the electronics manufacturing industry, in particular, for formation of specific hybrid (metal–dye) nanostructures, which can be utilized as luminescent markers in biology, medicine, criminalistics, and the trade industry. In the present study, we demonstrate the advantages of STED-inspired nanolithography for fabrication of metallic and hybrid nanostructures. The 3D-scanning setup implemented offers the possibility to form both periodic and aperiodic nanostructured arrays. We show the possibility to decrease substantially the lateral size of the lines formed with the use of STED nanolithography as compared to the direct laser writing (DLW) method. The STED nanolithography technique proposed provides a means for synthesizing metallic nanoparticles in the specified points of the volume of the studied object in vivo. In addition, we demonstrate the synthesis of metallic lines by means of STED nanolithography. Moreover, nanometer spatial precision of positioning of the synthesized nanoobjects is achieved. Therefore, it is possible to obtain significant local enhancement of the emission of luminescent markers (surface enhanced luminescence) at any desired point or area of the sample due to plasmonic enhancement of the electromagnetic fields near the surface of metallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hell and J. Wichmann, Opt. Lett, 19, 780 (1994).

    Article  ADS  Google Scholar 

  2. S. W. Hell, Angew. Chem. Int. Ed., 54, 8054 (2015).

    Article  Google Scholar 

  3. J. Fischer and M. Wegener, Opt. Mater. Express, 1, 614 (2011).

    Article  Google Scholar 

  4. R. Wallhofen, J. Katzmann, C. Hrelescu, et al., Opt. Express, 21, 10831 (2013).

    Article  ADS  Google Scholar 

  5. Y. Cao, Z. Gan, B. Jia, et al., Opt. Express, 19, 19486 (2011).

    Article  ADS  Google Scholar 

  6. S. P. Eliseev, A. E. Korolkov, A. G. Vitukhnovsky, et al., Nanotechnol. Russ., 11, 200 (2016).

    Article  Google Scholar 

  7. J. Fischer and M. Wegener, Laser Photon. Rev., 7, 22 (2013).

    Article  Google Scholar 

  8. T. A. Klar, R. Wollhofen, and J. Jacak, Phys. Scr., T162, 014049 (2014).

    Article  ADS  Google Scholar 

  9. M. Schumann, T. Bückmann, N. Gruhler, et al., Light Sci. Appl., 3, e175 (2014).

    Article  Google Scholar 

  10. J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater., 22, 3578 (2010).

    Article  Google Scholar 

  11. L. Zhang, S. Mei, K. Huang, and C. W. Qiu, Adv. Opt. Mater., 4, 818 (2016).

    Article  Google Scholar 

  12. N. Yu, P. Genevet, M. A. Kats, et al., Science, 334, 333 (2011).

    Article  ADS  Google Scholar 

  13. M. Khorasaninejad, W. T. Chen, R. C. Devlin, et al., Science, 352, 1190 (2016).

    Article  ADS  Google Scholar 

  14. J. P. B. Mueller, N. A. Rubin, R. C. Devlin, et al., Phys. Rev. Lett., 118, 113901 (2017).

    Article  ADS  Google Scholar 

  15. C. Rockstuhl, F. Lederer, C. Etrich, et al., Phys. Rev. Lett., 99, 017401 (2007).

    Article  ADS  Google Scholar 

  16. G. M. Whitesides and B. Grzybowski, Science, 295, 2418 (2002).

    Article  ADS  Google Scholar 

  17. R. M. Erb, H. S. Son, B. Samanta, et al., Nature, 457, 999 (2009).

    Article  ADS  Google Scholar 

  18. J. B. Pendry, Phys. Rev. Lett., 85, 3966 (2000).

    Article  ADS  Google Scholar 

  19. C. M. Soukoulis and M. Wegener, Nat. Photon., 5, 523 (2011).

    ADS  Google Scholar 

  20. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, Nano Lett., 9, 2532 (2009).

    Article  ADS  Google Scholar 

  21. A. A. Vashchenko, A. G. Vitukhnovskii, V. S. Lebedev, et al., JETP Lett., 100, 86 (2014).

    Article  ADS  Google Scholar 

  22. A. S. Selyukov, A. G. Vitukhnovskii, V. S. Lebedev, et al., J. Exp. Theor. Phys., 120, 185 (2015).

    Article  Google Scholar 

  23. S. W. Hell, Nat. Methods, 6, 24 (2009).

    Article  Google Scholar 

  24. M. Leutenegger, C. Eggeling, and S. W. Hell, Opt. Express, 18, 26417 (2010).

    Article  ADS  Google Scholar 

  25. Y. Sivan, Y. Sonnefraud, S. Kéna-Cohen, et al., ACS Nano, 6, 5291 (2012).

    Article  Google Scholar 

  26. Y. Sivan, Appl. Phys. Lett., 101, 021111 (2012).

    Article  ADS  Google Scholar 

  27. Y. Sonnefraud, H. G. Sinclair, Y. Sivan, et al., Nano Lett., 14, 4449 (2014).

    Article  ADS  Google Scholar 

  28. D. A. Glubokov, V. V. Sychev, A. G. Vitukhnovsky, and A. E. Korol’kov, Quantum Electron., 43, 588 (2013).

    Article  ADS  Google Scholar 

  29. D. A. Glubokov, V. V. Sychev, A. G. Vitukhnovskii, and I. V. Taidakov, “Method of manufacturing resistive masks for nanolithography,” RF Patent No. 2510632 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Selyukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitukhnovsky, A.G., Chubich, D.A., Eliseev, S.P. et al. Advantages of STED-Inspired 3D Direct Laser Writing for Fabrication of Hybrid Nanostructures. J Russ Laser Res 38, 375–382 (2017). https://doi.org/10.1007/s10946-017-9656-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9656-2

Keywords

Navigation