Skip to main content

Advertisement

Log in

A Novel Technique to Measure the Spatial–Temporal Intensity of an Ultrashort Pulse

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Based on a modified cross-correlation technique, we experimentally demonstrate a technique for measuring the spatial–temporal intensity of laser pulses. Pulse widths at different spatial positions of the ultrashort pulse are measured by changing the scan position of the probe beam. Due to the existence of residual chirp in the transverse position, pulse widths at the center of the beam are less than that at the edge. By measuring the temporal evolution in the fastest growth area of spatial intensity during small-scale self-focusing, we find that its pulse width decreases as power increases because of the spatial–temporal coupling effect. The results show that this method not only can be used to accurately measure the pulse width at any one spatial position of the beam, but can also be useful for real-time monitoring of the spatial–temporal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature, 416, 233 (2002).

    Article  ADS  Google Scholar 

  2. D. Polli, D. Brida, S. Mukamel, et al., Phys. Rev. A, 82, 053809 (2010).

    Article  ADS  Google Scholar 

  3. R. R. Gattass and E. Mazur, Nat. Photon., 2, 219 (2008).

    Article  ADS  Google Scholar 

  4. X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron., 33, 1706 (1997).

    Article  ADS  Google Scholar 

  5. M. Nagai, K. Tanaka, H. Ohtake, et al., Appl. Phys. Lett., 85, 3974 (2004).

    Article  ADS  Google Scholar 

  6. M. Nakazawa, J. Opt. Fiber Commun. Rep., 2, 462 (2005).

    Article  Google Scholar 

  7. S. H. Chung and E. Mazur, J. Biophoton., 2, 557 (2009).

    Article  Google Scholar 

  8. P. Weigl, A. Kasenbacher, and K. Werelius, “Dental applications,” in: Femtosecond Technology for Technical and Medical Applications, Springer, Berlin, Heidelberg (2004).

  9. C. Rulliere and R. R. Alfano, Phys. Today, 52, 51 (1999).

    Article  Google Scholar 

  10. C. Belzile, J. C. Kieffer, C. Y. Cote, et al., Rev. Sci. Instrum., 73, 1617 (2002).

    Article  ADS  Google Scholar 

  11. B. Cunin, J. A. Miehe, B. Sipp, et al., Rev. Sci. Instrum., 51, 103 (1980).

    Article  ADS  Google Scholar 

  12. J. K. Ranka, A. L. Gaeta, A. Baltuska, et al., Opt. Lett., 22, 1344 (1997).

    Article  ADS  Google Scholar 

  13. J. W. Nicholson, J. Jasapara, W. Rudolph, et al., Opt. Lett., 24, 1774 (1999).

    Article  ADS  Google Scholar 

  14. J. Ma, P. Yuan, Y. Wang, et al., Opt. Lett., 36, 978 (2011).

    Article  ADS  Google Scholar 

  15. D. J. Kane and R. Trebino, Opt. Lett., 18, 823 (1993).

    Article  ADS  Google Scholar 

  16. D. J. Kane and R. Trebino, IEEE J. Quantum Electron., 29, 571 (1993).

    Article  ADS  Google Scholar 

  17. R. Trebino, K. W. DeLong, D. N. Fittinghoff, et al., Rev. Sci. Instrum., 68, 3277 (1997).

    Article  ADS  Google Scholar 

  18. Y. Mairesse and F. Quéré, Phys. Rev. A, 71, 011401 (2005).

    Article  ADS  Google Scholar 

  19. C. Iaconis and I. A. Walmsley, Opt. Lett., 23, 792 (1998).

    Article  ADS  Google Scholar 

  20. M. Hirasawa, N. Nakagawa, K. Yamamoto, et al., Appl. Phys. B, 74, 225 (2002).

    Article  Google Scholar 

  21. E. Rubino, D. Faccio, L. Tartara, et al., Opt. Lett., 34, 3854 (2009).

    Article  ADS  Google Scholar 

  22. S. L. Cousin, J. M. Bueno, N. Forget, et al., Opt. Lett., 37, 3291 (2012).

    Article  ADS  Google Scholar 

  23. C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B, 74, 209 (2002).

    Article  ADS  Google Scholar 

  24. D. R. Austin, T. Witting, C. A. Arrell, et al., Opt. Lett., 36, 1746 (2011).

    Article  ADS  Google Scholar 

  25. P. Gabolde and R. Trebino, Opt. Express, 12, 4423 (2004).

    Article  ADS  Google Scholar 

  26. W. Kornelis, J. Biegert, J. W. Tisch, et al., Opt. Lett., 28, 281 (2003).

    Article  ADS  Google Scholar 

  27. A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, Opt. Lett., 31, 1914 (2006).

    Article  ADS  Google Scholar 

  28. T. Witting, F. Frank, C. A. Arrell, et al., Opt. Lett., 36, 1680 (2011).

    Article  ADS  Google Scholar 

  29. T. Witting, S. J. Weber, J. W. G. Tisch, and J. P. Marangos, Opt. Express, 20, 27974 (2012).

    Article  ADS  Google Scholar 

  30. Y. Deng, X. Fu, G. Tan, and S. Deng, IEEE Photon. Technol. Lett., 26, 1263 (2014).

    Article  Google Scholar 

  31. Y. Deng, X. Fu, C. Tan, and S. Deng, Appl. Phys. B, 114, 449 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiquan Fu.

Additional information

Manuscript submitted by the authors in English first on January 13, 2017 and in final form on April 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Fu, X., Deng, Y. et al. A Novel Technique to Measure the Spatial–Temporal Intensity of an Ultrashort Pulse. J Russ Laser Res 38, 294–300 (2017). https://doi.org/10.1007/s10946-017-9644-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9644-6

Keywords

Navigation