Skip to main content
Log in

All-Optical Wavelength Conversion Based on Four-Wave Mixing in Dispersion-Engineered Silicon Nanowaveguides

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate experimentally all-optical wavelength conversion based on four-wave mixing in dispersion-engineered silicon nanowaveguides with a picosecond pulse pump. We find that the conversion efficiency is significantly limited by nonlinear losses induced by the two-photon absorption and freecarrier absorption. Using a picosecond pulse pump centered at 1,550 nm, we show that the input continuous-wave signals can efficiently be converted into a broadband idler pulse in silicon waveguides with various dimensions. Conversion efficiencies versus signal wavelengths are different for silicon waveguides with different dimensions due to the variation in the phase mismatch; we obtain a conversion efficiency of – 32 dB in silicon nanowaveguides with a length of 5.8 mm. Such on-chip optical wavelength converters can find important potential applications in highly-integrated optical circuits for all-optical ultrafast signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Leuthold, C. Koos, and W. Freude, Nature Photon., 4, 535 (2010).

    Article  ADS  Google Scholar 

  2. H. Rong, R. Jones, A. Liu, et al., Nature, 433, 725 (2005).

    Article  ADS  Google Scholar 

  3. H. Rong, S. Xu, Y. Kuo, et al., Nature Photon., 1, 232 (2007).

    Article  ADS  Google Scholar 

  4. R. Dekker, A. Driessen, T. Wahlbrink, et al., Opt. Express, 14, 8336 (2006).

    Article  ADS  Google Scholar 

  5. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, Opt. Lett., 34, 476 (2009).

    Article  ADS  Google Scholar 

  6. T. K. Liang and H. K. Tsang, Appl. Phys. Lett., 81, 1323 (2002).

    Article  ADS  Google Scholar 

  7. T. Liang, L. Nunes, T. Sakamoto, et al., Opt. Express, 13, 7298 (2005).

    Article  ADS  Google Scholar 

  8. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature, 431, 1081 (2004).

    Article  ADS  Google Scholar 

  9. M. A. Foster, A. C. Turner, J. E. Sharping, et al., Nature, 441, 960 (2006).

    Article  ADS  Google Scholar 

  10. X. Liu, R. M. Osgood Jr, Y. A. Vlasov and W. M. J. Green, Nature Photon., 4, 557 (2010).

    Article  ADS  Google Scholar 

  11. Z. Wang, H. Liu, N. Huang, et al., Opt. Express, 19, 24730 (2011).

    Article  ADS  Google Scholar 

  12. Z. Wang, H. Liu, Q. Sun, et al., Opt. Express, 22, 31486 (2014).

    Article  ADS  Google Scholar 

  13. R. L. Espinola, J. I. Dadap, R. M. Osgood, et al., Opt. Express, 13, 4341 (2005).

    Article  ADS  Google Scholar 

  14. W. Mathlouthi, H. Rong, and M. Paniccia, Opt. Express, 16, 16735 (2008).

    Article  ADS  Google Scholar 

  15. A. C. Turner-Foster, M. A. Foster, R. Salem, et al., Opt. Express, 18, 1904 (2010).

    Article  ADS  Google Scholar 

  16. S. Zlatanovic, J. S. Park, S. Moro, et al., Nature Photon., 4, 561 (2010).

    Article  ADS  Google Scholar 

  17. N. Ophir, J. Chan, K. Padmaraju, et al., Photon. Tech. Lett., 23, 73 (2011).

    Article  ADS  Google Scholar 

  18. H. Hu, H. Ji, M. Galili, et al., Opt. Express, 19, 19886 (2011).

    Article  ADS  Google Scholar 

  19. X. Wang, L. Huang, K. Yi, X. Feng, and S. Gao, Opt. Lett., 39, 6122 (2014).

    Article  ADS  Google Scholar 

  20. R. Salem, M. A. Foster, A. C. Turner, et al., Nature Photon., 2, 35 (2007).

    Article  ADS  Google Scholar 

  21. A. Biberman, B. G. Lee, A. C. Turner-Foster, et al., Opt. Express, 18, 18047 (2010).

    Article  ADS  Google Scholar 

  22. X. Wang, L. Huang, and S. Gao, Opt. Lett., 39, 6907 (2014).

    Article  ADS  Google Scholar 

  23. H. Ji, M. Pu, H. Hu, et al., J. Lightwave Technol., 29, 426 (2011).

    Article  ADS  Google Scholar 

  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, H., Sun, Q. et al. All-Optical Wavelength Conversion Based on Four-Wave Mixing in Dispersion-Engineered Silicon Nanowaveguides. J Russ Laser Res 38, 204–210 (2017). https://doi.org/10.1007/s10946-017-9635-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9635-7

Keywords

Navigation