Skip to main content
Log in

Effect of Mixing at the Fuel–Ablator Interface on the Burning of Inertial Confinement Fusion Targets Upon Direct Irradiation with a Megajoule Laser Pulse

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present the results of theoretical and numerical research on the burning of spherical thermonuclear targets under conditions where the peripheral part of the deuterium–tritium plasma is mixed with the surrounding inert substance of the target ablator; this takes place as a result of the development of hydrodynamic instabilities during the process of compression under the laser-pulse action. We investigate targets with parameters corresponding to the irradiation conditions given by the Russian Project on Megajoule Facility with an energy of about 2 MJ. For the investigated class of targets conforming to a large part of the evaporated ablator substance (no less than 75% of its initial mass), we show that the mixing does not spread to the region of strongly compressed fuel, which introduces a determining contribution to the propagation of the burning wave, not to speak of the central part of hot plasma responsible for the initiation of the burning wave. For this reason, the negative effect of the mixing on the burning efficiency of such targets is insignificant, and, as compared with the target burn in the absence of mixing, the released fusion energy decreased by no more than 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Afanas’ev, N. G. Basov, P. P. Volosevich, et al., in: Proceedings Fifth IAEA Conference (Tokyo, 11–15 November 1974), IAEA, Vienna (1975), Vol. 2, p. 559.

  2. Yu. V. Afanas’ev, N. G. Basov, P. P. Volosevich, et al., JETP Lett., 21, 150 (1975).

    Google Scholar 

  3. V. B. Rozanov, C. P. Verdon, M. Decroisette, et al., “Inertial confinement target physics,” in: Energy from Inertial Fusion, IAEA, Vienna (1995).

  4. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press (2004).

  5. G. Taylor, Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 201, 192 (1950).

    Article  ADS  Google Scholar 

  6. H. Helmholtz, Sitz. Acad. Wiss. Berlin, 3, 647 (1888).

    Google Scholar 

  7. M. J. Edwards, P. K. Patel, and J. D. Lindl, Phys. Plasmas, 20, 070501 (2013).

    Article  ADS  Google Scholar 

  8. O. A. Hurricane, D. A. Callahan, D. T. Casey, et al., Nature, 506, 343 (2014).

    Article  ADS  Google Scholar 

  9. D. S. Clark, C. R. Weber, J. L. Milovich, et al., Phys. Plasmas, 23, 056302 (2015).

    Article  ADS  Google Scholar 

  10. S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep., 37, 1020 (2011).

    Article  ADS  Google Scholar 

  11. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, et al., J. Exp. Theor. Phys., 121, 686 (2015).

    Article  ADS  Google Scholar 

  12. S. G. Garanin, Phys. Uspekhi, 54, 415 (2011).

    Article  ADS  Google Scholar 

  13. N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, et al., Vopr. Atom. Nauki Tekh., Ser.: Metod. Programm. Chislennogo Resheniya Zadach Mat. Fiz., 2, 38 (1982) [in Russian].

    Google Scholar 

  14. V. B. Rozanov and N. N. Demchenko, Quantum Electron., 12, 1895 (1985).

    Google Scholar 

  15. N. N. Demchenko, I. Ya. Doskoch, S. Yu. Gus’kov, et al., Laser Part. Beams, 33, 4, 655 (2015).

    Article  ADS  Google Scholar 

  16. S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, et al., Laser Part. Beams, 16, 11129 (1998).

    Google Scholar 

  17. H. Takabe, K. Mima, L. Montierth, and R. L. Morse, Phys. Fluids, 28, 3676 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  18. Yu. V. Afanas’ev and S. Yu. Gus’kov, in: G. Velarde, Y. Ronen, and J. M. Mart´ınez-Val (Eds.), Nuclear Fusion by Inertial Confinement, CRC Press (1993), p. 99.

  19. E. Fermi and J. von Neumann, “Taylor instability at the boundary of two incompressible liquids,” in: Part 2 of Document AECU-2979 (August 19, 1953).

  20. S. W. Haan, Phys. Rev. A, 3, 5812 (1982).

    Google Scholar 

  21. D. L. Youngs, Physics D, 12, 32 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Gus’kov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, S.Y., Demchenko, N.N., Zmitrenko, N.V. et al. Effect of Mixing at the Fuel–Ablator Interface on the Burning of Inertial Confinement Fusion Targets Upon Direct Irradiation with a Megajoule Laser Pulse. J Russ Laser Res 38, 173–184 (2017). https://doi.org/10.1007/s10946-017-9631-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9631-y

Keywords

Navigation