Skip to main content
Log in

A Classical Analog of Random Quantum States

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We examine the statistical properties of a pure quantum state randomly chosen with respect to the uniform measure in a Hilbert space. Namely, we consider the distribution of outcomes of a fixed measurement performed on the random quantum state. We show that such distribution is completely analogous to the distribution of measurement outcomes of an a priori unknown classical random system. In particular, Shannon entropies of both distributions coincide. We study this correspondence between quantum and classical random systems and clarify its origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Wooters and W. H. Zurek, Nature, 299, 802 (1982).

    Article  ADS  Google Scholar 

  2. D. Dieks, Phys. Lett. A., 92, 271 (1982).

    Article  ADS  Google Scholar 

  3. Ch. H. Bennett and G. Brassard, in: Proceedings of the IEEE Inernational Conference on Computers, Systems, and Signal Processing (Bangalore, India), IEEE, New York (1984), p. 175.

  4. D. Sych and G. Leuchs, Found. Phys., 45, 1613 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. Ch. Gabriel, Ch. Wittmann, D. Sych, et al., Nature Photonics, 4, 711 (2010).

    Article  ADS  Google Scholar 

  6. C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).

    Article  MathSciNet  Google Scholar 

  7. S. Sykora, J. Stat. Phys., 11, 17 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  8. W. K. Wootters, Found. Phys., 20, 1365 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. R. W. Jones, J. Phys. A: Math. Gen., 23, L1247 (1990).

    Article  ADS  Google Scholar 

  10. C. M. Caves and C. A. Fuchs, ArXiv quant-ph/9601025 (1996).

  11. D. V. Sych, B. A. Grishanin, and V. N. Zadkov, Phys. Rev. A, 70, 052331 (2004).

    Article  ADS  Google Scholar 

  12. D. V. Sych, B. A. Grishanin, and V. N. Zadkov, Quantum Electron., 35, 80 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Sych.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sych, D. A Classical Analog of Random Quantum States. J Russ Laser Res 37, 556–561 (2016). https://doi.org/10.1007/s10946-016-9607-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9607-3

Keywords

Navigation