Abstract
We examine the statistical properties of a pure quantum state randomly chosen with respect to the uniform measure in a Hilbert space. Namely, we consider the distribution of outcomes of a fixed measurement performed on the random quantum state. We show that such distribution is completely analogous to the distribution of measurement outcomes of an a priori unknown classical random system. In particular, Shannon entropies of both distributions coincide. We study this correspondence between quantum and classical random systems and clarify its origin.
Similar content being viewed by others
References
W. K. Wooters and W. H. Zurek, Nature, 299, 802 (1982).
D. Dieks, Phys. Lett. A., 92, 271 (1982).
Ch. H. Bennett and G. Brassard, in: Proceedings of the IEEE Inernational Conference on Computers, Systems, and Signal Processing (Bangalore, India), IEEE, New York (1984), p. 175.
D. Sych and G. Leuchs, Found. Phys., 45, 1613 (2015).
Ch. Gabriel, Ch. Wittmann, D. Sych, et al., Nature Photonics, 4, 711 (2010).
C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).
S. Sykora, J. Stat. Phys., 11, 17 (1974).
W. K. Wootters, Found. Phys., 20, 1365 (1990).
K. R. W. Jones, J. Phys. A: Math. Gen., 23, L1247 (1990).
C. M. Caves and C. A. Fuchs, ArXiv quant-ph/9601025 (1996).
D. V. Sych, B. A. Grishanin, and V. N. Zadkov, Phys. Rev. A, 70, 052331 (2004).
D. V. Sych, B. A. Grishanin, and V. N. Zadkov, Quantum Electron., 35, 80 (2005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sych, D. A Classical Analog of Random Quantum States. J Russ Laser Res 37, 556–561 (2016). https://doi.org/10.1007/s10946-016-9607-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10946-016-9607-3