Journal of Russian Laser Research

, Volume 37, Issue 3, pp 254–258 | Cite as

Second Harmonic Generation in Microstructured Barium Titanate

  • V. S. Gorelik
  • K. I. Zaitsev
  • V. A. Lazarev
  • S. O. Leonov
  • S. O. Yurchenko
  • Yu. P. Voinov
  • L. I. Zlobina
  • P. P. Sverbil
Article
  • 73 Downloads

Abstract

We investigate the second harmonic generation under femtosecond pulse-periodic laser radiation in barium titanate in the form of ceramics, in pores of a globular photonic crystal, and in a water colloidal suspension. We measure the dependence of the second harmonic radiation intensity on the incident laser power. Excitation of the second harmonic was carried out by powerful (108 W) pulses of a solid-state Yb:KGW laser (wavelength, 1,026 nm) operating at 200 kHz. We estimate the efficiency of the second harmonic generation in various microstructured phases of barium titanate and show that the threshold of plasma formation in a suspension of barium titanate microparticles in water is substantially higher than in ceramics and in the ferroelectric photonic crystal. The second-harmonicgeneration power can be significantly increased in a water suspension of barium titanate microparticles.

Keywords

second-harmonic generation barium titanate microparticles suspension ferroelectric photonic crystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Miller, Appl. Phys. Lett., 5, 17 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    V. S. Gorelik, E. V. Zhabotinskii, and G. G. Mitin, Sov. J. Quantum Electron., 24, 338 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    H. A. Lu, L. A. Wills, B. W. Wessels, et al., Appl. Phys. Lett., 62, 1314 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    Lin Pao Tai, B. W. Wessels, I. Jang Joon, and J. B. Ketterson, Appl. Phys. Lett., 92, 221103 (2008).Google Scholar
  5. 5.
    A. M. Agaltsov, V. S. Gorelik, and V. M. Moiseenko, Bull. Lebedev Phys. Inst., 5, 49 (1985).Google Scholar
  6. 6.
    Y. Uesu, S. Kurimura, and Y. Yamamoto, Appl. Phys. Lett., 66, 2165 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    L. D. Rotter, D. L. Kaiser, and M. D. Vaudin, Appl. Phys. Lett., 68, 310 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    E. Kim, A. Steinbruck, M. T. Buscaglia, et al., ACS Nano, 7, 5343 (2013).CrossRefGoogle Scholar
  9. 9.
    R. A. Ganeev, M. Suzuki, M. Baba, et al., J. Opt. Soc. Am. B, 25, 325 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    L. Malmqvist and H. M. Hertz, Appl. Opt., 34, 3392 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    B. L. Davydov and A. A. Krylov, Quantum Electron., 37, 661 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Gordienko, V. A. Dyakov, P. M. Mikheev, and V. S. Syrtsov, Quantum Electron., 36, 1072 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Gordienko, V. A. Dyakov, P. M. Mikheev, and V. S. Syrtsov, Quantum Electron., 37, 1033 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    V. S. Gorelik, Eur. Phys. J. Appl. Phys., 49, 33007 (2010).CrossRefGoogle Scholar
  15. 15.
    R. A. Ganeev, Phys. Uspekhi, 55, 55 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    R. A. Ganeev, Phys. Uspekhi, 56, 772 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. S. Gorelik
    • 1
  • K. I. Zaitsev
    • 2
  • V. A. Lazarev
    • 2
  • S. O. Leonov
    • 2
  • S. O. Yurchenko
    • 2
  • Yu. P. Voinov
    • 1
  • L. I. Zlobina
    • 1
  • P. P. Sverbil
    • 1
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations