Skip to main content
Log in

Laser-Induced Breakdown Spectroscopy Via the Spatially Resolved Technique Using Non-Gated Detector

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a simple setup for laser-induced breakdown spectroscopy using the spatially resolved technique (SRLIBS). We show that, without any need for time-gated ICCD and pulse generator, the signal-to-background ratio is enhanced. We develop a homemade spectrograph with a movable slit located at its entrance to detect different parts of the plasma emission. For optimizing the position of the slit, we use the shadowgraphy technique to study the plasma expansion. In this low cost setup, with nanosecond laser pulses, we perform SRLIBS experiments on the plasma induced in air and iron. Our results show that the signal-to-background ratio for iron and air is enhanced up to 15 and 8 times, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Najarian and R. C. Chinni, J. Chem. Educ., 90, 244 (2012).

    Article  Google Scholar 

  2. R. C. Chinni, J. Chem. Educ., 89, 678 (2012).

    Article  Google Scholar 

  3. D. W. Randall, R. T. Hayes, and P. A. Wong, J. Chem. Educ., 90, 456 (2013).

    Article  Google Scholar 

  4. J. Siegel, G. Epurescu, A. Perea, et al., Spectrochim. Acta B, 60, 915 (2005).

    Article  ADS  Google Scholar 

  5. A. Eslami Majd, A. S. Arabanian, and R. Massudi, Opt. Laser Eng., 48, 750 (2010).

    Article  Google Scholar 

  6. A. Eslami Majd, A. S. Arabanian, R. Massudi, and M. Nazeri, Appl. Spectrosc., 65, 36 (2011).

    Article  ADS  Google Scholar 

  7. T. Fujimoto and A. Iwamae, Plasma Polarization Spectroscopy, Springer (2007), Vol. 44.

  8. R. Krasniker, V. Bulatov, and I. Schechter, Spectrochim. Acta B, 56, 609 (2001).

    Article  ADS  Google Scholar 

  9. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier (2007).

  10. D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons (2006).

  11. J. Sneddon and Y. I. Lee, Chem. Educ., 3, 1 (1998).

    Article  Google Scholar 

  12. L. J. Radziemski, Spectrochim. Acta B, 57, 1109 (2002).

    Article  ADS  Google Scholar 

  13. L. St-Onge, V. Detalle, and M. Sabsabi, Spectrochim. Acta B, 57, 121 (2002).

    Article  ADS  Google Scholar 

  14. S. G. Buckley, Laser Focus World, 42, 95 (2006).

    Google Scholar 

  15. V. Molinari, D. Mostacci, F. Rocchi, and M. Sumini, J. Anal. At. Spectrom., 19, 457 (2004).

    Article  Google Scholar 

  16. A. I. Whitehouse, Spectrosc. Eur., 18, 14 (2006).

    Google Scholar 

  17. J. Scaffidi, J. Pender, W. Pearman, et al, Appl. Opt., 42, 6099 (2003).

    Article  ADS  Google Scholar 

  18. L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications, Marcel Dekker, New York (1989).

    Google Scholar 

  19. G. Cristoforetti, S. Legnaioli, V. Palleschi, et al., Spectrochim. Acta B, 59, 1907 (2004).

    Article  ADS  Google Scholar 

  20. A. Bogaerts, Z. Chen, and D. Bleiner, J. Anal. At. Spectrom., 21, 384 (2006).

    Article  Google Scholar 

  21. K. L. Mason and J. M. Goldberg, Appl. Spectrosc., 45, 370 (1991).

    Article  ADS  Google Scholar 

  22. V. N. Rai, J. P. Singh, F. Y. Yueh, et al., Laser Part. Beams, 21, 65 (2003).

    Article  ADS  Google Scholar 

  23. P. Stavropoulos, C. Palagas, G. Angelopoulos, et al., Spectrochim. Acta B, 59, 1885 (2004).

    Article  ADS  Google Scholar 

  24. V. Margetic, A. Pakulev, A. Stockhaus, et al., Spectrochim. Acta B, 55, 1771 (2000).

    Article  ADS  Google Scholar 

  25. L. St-Onge, V. Detalle, and M. Sabsabi, Spectrochim. Acta B, 57, 121 (2002).

    Article  ADS  Google Scholar 

  26. J. Scaffidi, S. M. Angel, and D. A. Cremers, Anal. Chem., 78, 24 (2006).

    Article  Google Scholar 

  27. V. Bulatov, R. Krasniker, and I. Schechter, Anal. Chem., 72, 2987 (2000).

    Article  Google Scholar 

  28. S. J. J. Tsai, S. Y. Chen, Y. S. Chung, et al., Anal. Chem., 78, 7432 (2006).

    Article  Google Scholar 

  29. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, J. Appl. Phys., 104, 053303 (2008).

    Article  ADS  Google Scholar 

  30. N. Arnold, J. Gruber, and J. Heitz, Appl. Phys. A, 69, S87 (1999).

    Article  ADS  Google Scholar 

  31. S. H. Tavassoli, I. V. Cravetchi, and R. Fedosejevs, IEEE Trans. Plasma Sci., 34, 2594 (2006).

    Article  ADS  Google Scholar 

  32. J. E. Sansonetti and W. C. Martin, Handbook of Basic Atomic Spectroscopic Data. J. Phys. Chem. Ref. 3 Data, 34, 1559 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nazeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeri, M., Majd, A.E., Massudi, R. et al. Laser-Induced Breakdown Spectroscopy Via the Spatially Resolved Technique Using Non-Gated Detector. J Russ Laser Res 37, 164–171 (2016). https://doi.org/10.1007/s10946-016-9556-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9556-x

Keywords

Navigation