Skip to main content
Log in

Excitation of the Classical Electromagnetic Field in a Cavity Containing a Thin Slab with a Time-Dependent Conductivity

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We derive an exact infinite set of coupled ordinary differential equations describing the evolution of the modes of the classical electromagnetic field inside an ideal cavity containing a thin slab with the time-dependent conductivity σ(t) and dielectric permittivity ε(t) for the dispersion-less media. We analyze this problem in connection with the attempts to simulate the so-called dynamical Casimir effect in three-dimensional electromagnetic cavities containing a thin semiconductor slab periodically illuminated by strong laser pulses. Therefore, we assume that functions σ(t) and δε(t) = ε(t) − ε(0) are different from zero during short time intervals (pulses) only. Our main goal here is to find the conditions under which the initial nonzero classical field could be amplified after a single pulse (or a series of pulses). We obtain approximate solutions to the dynamical equations in the cases of “small” and “big” maximal values of the functions σ(t) and δε(t). We show that the single-mode approximation used in the previous studies can be justified in the case of “small” perturbations, but the initially excited field mode cannot be amplified in this case if the laser pulses generate free carriers inside the slab. The amplification could be possible, in principle, for extremely high maximum values of conductivity and the concentration of free carries (the model of an “almost ideal conductor”) created inside the slab under the crucial condition providing the negativity of the function δε(t). This result follows from a simple approximate analytical solution confirmed by exact numerical calculations. However, the evaluation shows that the necessary energy of laser pulses must be, probably, unrealistically high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Dodonov, “Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries,” in: M. W. Evans (Ed.), Modern Nonlinear Optics, Advances in Chemical Physics Series, Wiley, New York (2001), Vol. 119, Pt. 1, p. 309 [quant-ph/0106081].

  2. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res., 26, 445 (2005).

    Article  Google Scholar 

  3. V. V. Dodonov, Phys. Scr., 82, 038105 (2010).

    Article  ADS  Google Scholar 

  4. D. A. R. Dalvit, P. A. Maia Neto, and F. D. Mazzitelli, “Fluctuations, dissipation and the dynamical Casimir effect,” in: D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa (Eds.), Casimir Physics, Lecture Notes in Physics, Springer, Berlin (2011), Vol. 834, p. 419 [arXiv: 1006.4790].

  5. P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev. Mod. Phys., 84, 1 (2012).

    Article  ADS  Google Scholar 

  6. G. T. Moore, J. Math. Phys., 11, 2679 (1970).

    Article  ADS  Google Scholar 

  7. E. Yablonovitch, Phys. Rev. Lett., 62, 1742 (1989).

    Article  ADS  Google Scholar 

  8. E. Sassaroli, Y. N. Srivastava, and A. Widom, Phys. Rev. A, 50, 1027 (1994).

    Article  ADS  Google Scholar 

  9. V. V. Dodonov and A. B. Klimov, Phys. Lett. A, 167, 309 (1992).

    Article  ADS  Google Scholar 

  10. V. V. Dodonov and A. B. Klimov, Phys. Rev. A, 53, 2664 (1996).

    Article  ADS  Google Scholar 

  11. A. Lambrecht, M.-T. Jaekel, and S. Reynaud, Phys. Rev. Lett., 77, 615 (1996).

    Article  ADS  Google Scholar 

  12. D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. A, 59, 3049 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Plunien, R. Schützhold, and G. Soff, Phys. Rev. Lett., 84, 1882 (2000).

    Article  ADS  Google Scholar 

  14. V. I. Man’ko, J. Sov. Laser Res., 12, 383 (1991).

    Article  Google Scholar 

  15. Y. E. Lozovik, V. G. Tsvetus, and E. A. Vinogradov, Phys. Scr., 52, 184 (1995).

    Article  ADS  Google Scholar 

  16. C. M. Wilson, G. Johansson, A. Pourkabirian, et al., Nature, 479, 376–379 (2011).

    Article  ADS  Google Scholar 

  17. P. L¨ahteenm¨aki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen, Proc. Natl. Acad. Sci. USA, 110, 4234 (2013).

  18. C. Braggio, G. Bressi, G. Carugno, et al., Rev. Sci. Instrum., 75, 4967 (2004).

    Article  ADS  Google Scholar 

  19. C. Braggio, G. Bressi, G. Carugno, et al., Europhys. Lett., 70, 754 (2005).

    Article  ADS  Google Scholar 

  20. A. Agnesi, C. Braggio, G. Bressi, et al., J. Phys.: Conf. Ser., 161, 012028 (2009).

    ADS  Google Scholar 

  21. C. Braggio, G. Bressi, G. Carugno, et al., Nucl. Instrum. Methods Phys. Res. A, 603, 451 (2009).

    Article  ADS  Google Scholar 

  22. G. Giunchi, A. Figini Albisetti, C. Braggio, G. Carugno, et al., IEEE Trans. Appl. Supercond., 21, 745 (2011).

    Article  ADS  Google Scholar 

  23. A. Agnesi, C. Braggio, G. Carugno, et al., Rev. Sci. Instrum., 82, 115107 (2011).

    Article  ADS  Google Scholar 

  24. A. V. Dodonov and V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 7, S47 (2005).

    Article  ADS  Google Scholar 

  25. V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 7, S445 (2005).

    Article  ADS  Google Scholar 

  26. V. V. Dodonov and A. V. Dodonov, J. Phys. A: Math. Gen., 39, 6271 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  27. V. V. Dodonov and A. V. Dodonov, J. Phys. B: At. Mol. Opt. Phys., 39, S749 (2006).

    Article  ADS  Google Scholar 

  28. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res., 27, 379 (2006).

    Article  MathSciNet  Google Scholar 

  29. V. V. Dodonov, Phys. Rev. A, 80, 023814 (2009).

    Article  ADS  Google Scholar 

  30. V. V. Dodonov, Rev. Mex. Fís., S57, 120 (2011).

    MathSciNet  Google Scholar 

  31. M. Crocce, D. A. R. Dalvit, and F. D. Mazzitelli, Phys. Rev. A, 64, 013808 (2001).

    Article  ADS  Google Scholar 

  32. A. V. Dodonov and V. V. Dodonov, Phys. Lett. A, 289, 291 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  33. A. V. Dodonov and V. V. Dodonov, Phys. Lett. A, 376, 1903 (2012).

    Article  ADS  Google Scholar 

  34. C. Braggio, G. Carugno, and G. Ruoso, MIR Report (unpublished) and private communications.

  35. L. A. Vainshtein, Electromagnetic Waves, Radio i Svyaz, Moscow (1988), Sec. 88 [in Russian].

  36. L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon, Oxford (1969), Sec. 27.

  37. D. A. Kirzhnits, Uspekhi Fiz. Nauk, 152, 399 (1987) [Sov. Phys. Uspekhi, 30, 575 (1987)].

  38. S. A. Ramakrishna, Rep. Prog. Phys., 68, 449 (2005).

    Article  ADS  Google Scholar 

  39. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Volume 1: Elementary Functions, Gordon and Breach, New York (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor V. Dodonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodonov, V.V., Dodonov, A.V. Excitation of the Classical Electromagnetic Field in a Cavity Containing a Thin Slab with a Time-Dependent Conductivity. J Russ Laser Res 37, 107–122 (2016). https://doi.org/10.1007/s10946-016-9551-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9551-2

Keywords

Navigation