Skip to main content

Efficiency in Multimode Broadband Resonant Quantum Memory

Abstract

We discuss the beam-splitter model of quantum memory for demonstrating the connection between the memory efficiency and the multimode storage of the quantum statistical characteristics of light, such as the Mandel parameter and quadrature squeezing. We demonstrate in what sense the beam-splitter model can be applied to characterize the multimode quantum memory. This subject is considered in terms of the eigenfunctions of the integral transform connecting the initial signal with the restored one. We suggest a pulse of light for remembering its cutoff from a stationary sub-Poissonian laser emission. The mode structure of the laser radiation is interpreted in terms of eigenmodes of a full memory cycle. We find the degree of squeezing and sub-Poissonian statistics for each of the modes. Lastly, we consider a specific regime of the quantum memory operation, when only the first two modes are retained with high efficiency, and these modes can be considered as not overlapping along the time axes. This regime demonstrates the possibility to store the quantum properties of light, even at low efficiency. We discuss such behavior on the example of high-speed resonant quantum memory with a synchronized sub-Poissonian light pulse at the input.

This is a preview of subscription content, access via your institution.

References

  1. K. Hammerer, A. S. Sorensen, and E. S. Polzik, Rev. Mod. Phys., 82, 1041 (2010).

    Article  ADS  Google Scholar 

  2. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nature Photon., 3, 706 (2009).

    Article  ADS  Google Scholar 

  3. C. Simon, M. Afzelius, J. Appel, et al., Eur. Phys. J. D, 58, 1 (2010).

    Article  ADS  Google Scholar 

  4. C.-W. Chou, L. Laurat, H. Deng, et al., Science, 316, 1316 (2007).

    Article  ADS  Google Scholar 

  5. Y.-A. Chen, S. Chen, Z. S. Yuan, et al., Nature Phys., 4, 103 (2008).

    MathSciNet  Article  ADS  Google Scholar 

  6. W. Tittel, M. Afzelius, T. Chaneliere, et al;., Laser Photon. Rev., 4, 244 (2010).

    Article  Google Scholar 

  7. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys., 77, 633 (2005).

    Article  ADS  Google Scholar 

  8. C. Liu, Z. Dutton, C. H. Behroozi, and L.V. Hau, Nature, 409, 490 (2001).

    Article  ADS  Google Scholar 

  9. D. F. Phillips, A. Fleischhauer, A. Mair, et al., Phys. Rev. Lett., 86, 783 (2001).

    Article  ADS  Google Scholar 

  10. I. Novikova, R.L. Walsworth, and Y. Xiao, Laser Photon. Rev. 6, 333 (2012).

    Article  Google Scholar 

  11. J. Nunn, I. A. Walmsley, M. G. Raymer, et al., Phys. Rev. A, 75, 011401(R) (2007).

  12. A. V. Gorshkov, A. Andre, M. Fleischhauer, et al., Phys. Rev. Lett., 98, 123601 (2007).

    Article  ADS  Google Scholar 

  13. K. F. Reim, J. Nunn, V. O. Lorenz, et al., Nature Photon., 4, 218 (2010).

    Article  ADS  Google Scholar 

  14. C. A. Muschik, K. Hammerer, E. S. Polzik, and J. I. Cirac, Phys. Rev. A, 73, 062329 (2006).

    Article  ADS  Google Scholar 

  15. B. Julsgaard, J. Sherson, J. I. Cirac, et al., Nature, 432, 482 (2004).

    Article  ADS  Google Scholar 

  16. T. Y. Golubeva, Y. M. Golubev, O. Mishina, et al., Phys. Rev. A, 83, 053810 (2011).

    Article  ADS  Google Scholar 

  17. T. Y. Golubeva, Y. M. Golubev, O. Mishina, et al., Eur. Phys. J. D, 66, 275 (2012).

    Article  ADS  Google Scholar 

  18. K. Tikhonov, K. Samburskaya, T. Y. Golubeva, and Y. M. Golubev, Phys. Rev. A, 89, 013811 (2014).

    Article  ADS  Google Scholar 

  19. S. A. Moiseev, J. Phys. B: At. Mol. Opt. Phys., 40, 3877 (2007).

    Article  ADS  Google Scholar 

  20. N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Phys. Rev. A, 75, 032327 (2007).

    Article  ADS  Google Scholar 

  21. I. Iakoupov and A. S. Sorensen, New J. Phys., 15, 085012 (2013).

    Article  ADS  Google Scholar 

  22. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Phys. Rev. A, 79, 052329 (2009).

    Article  ADS  Google Scholar 

  23. P. Jobez, I. Usmani, N. Timoney, et al., New J. Phys., 16, 083005 (2014).

    Article  ADS  Google Scholar 

  24. E. Saglamyurek, N. Sinclair, J. A. Slater, et al., New J. Phys., 16, 065019 (2014).

    Article  ADS  Google Scholar 

  25. M. Bonarota, J.-L. Le Gouet, and T. Chaneliere, New J. Phys., 13, 013013 (2011).

    Article  ADS  Google Scholar 

  26. K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Phys. Rev. Lett., 94, 150503 (2005).

    Article  ADS  Google Scholar 

  27. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sorensen, Phys. Rev. A, 76, 033804 (2007).

    Article  ADS  Google Scholar 

  28. J. Nunn, K. Reim, K. C. Lee, et al., Phys. Rev. Lett., 101, 260502 (2008).

    Article  ADS  Google Scholar 

  29. M. M. Wolf, D. Perez-Garcia, and G. Giedke, Phys. Rev. Lett., 99, 130501 (2007).

    MathSciNet  Article  Google Scholar 

  30. K. S. Samburskaya, T. Yu. Golubeva, V. A. Averchenko, and Yu. M. Golubev, Opt. Spectrosc., 113, 86 (2012).

    Article  ADS  Google Scholar 

  31. Yu. Golubev, T. Golubeva, and D. Ivanov, Phys. Rev. A, 77, 052316 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury M. Golubev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golubeva, T.Y., Golubev, Y.M. Efficiency in Multimode Broadband Resonant Quantum Memory. J Russ Laser Res 36, 522–533 (2015). https://doi.org/10.1007/s10946-015-9531-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9531-y

Keywords

  • efficiency
  • quantum memory
  • multimode memory
  • fast memory
  • beam splitter
  • squeezing
  • sub-Poissonian statistics
  • Schmidt modes