Skip to main content

Numerical Modeling of Thermomechanical Stresses Generated in a Thin Film Under Laser-Pulse Action

Abstract

We develop a mathematical model for calculating thermomechanical stresses generated in a thin film under laser-pulse action. We propose a model that also allows one to evaluate the duration of transient processes and determine laser-pulse parameters, including a profile that is particularly useful for studies of triboluminescent materials. The model includes a nonstationary heat equation and a thermoelasticity equation, which we solve numerically using the finite difference method.

This is a preview of subscription content, access via your institution.

References

  1. A. M. Gurvich, Introduction to Crystal Phosphor Physical Chemistry [in Russian], Vysshaya Shkola, Moscow (1982).

    Google Scholar 

  2. K. V. Tatmyshevskii, Datchiki i Systemy (Sensors and Systems), No. 1, 15 (2005).

  3. N. Yu. Makarova and K. V. Tatmyshevskii, Inzh. Fiz., No. 1, 1 (2006).

  4. K. V. Tatmyshevskii, Mikrosistemnaya Tekhnika (J. Nano Microsystem. Tech.), No. 12, 4 (2004).

  5. A. F. Banishev, V. A. Bol’shukhin, and A. D. Azarov, Phys. Chem. Mater. Process., No. 3, 24 (2008).

  6. N. V. Tcherniega, K. I. Zemskov, V. V. Savranskii, et al., J. Russ. Laser Res., 32, 247 (2011).

    Article  Google Scholar 

  7. N. K. Morozova, I. A. Karetnikov, V. V. Blinov, and E. M. Gavrishchuk, Semiconductors, 35, 24 (2001).

    Article  ADS  Google Scholar 

  8. K. B. Abramova and I. P. Shcherbakov, Tech. Phys., 39, 90 (1994).

    Google Scholar 

  9. E. B. Yakovlev and G. D. Shandybina, Laser–Matter Interaction (Power Optics), Lectures, Pt. II, in: V. P. Veiko (Ed.), Laser Heating and Destruction of Materials [in Russian], GU ITMO, Saint- Petersburg, Russia (2011).

    Google Scholar 

  10. A. D. Kovalenko, Thermoelasticity, Wolters-Noordhoff, Gr¨oningen, The Netherlands (1969).

    Google Scholar 

  11. A. S. Isaeva, E. A. Ryndin, and R. V. Ryzhuk, Fundamental’nye Issledovaniya (Fundamental Research), No. 11, 609 (2012).

  12. E. A. Ryndin and A. S. Isaeva, Numerical code for modeling of mechanical stresses in a material initiated by a laser pulse, Russian Federation Computer Program Patent No. 2013610833 (2013).

  13. I. N. Franzevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Moduli of Elasticity of Metals and Nonmetals. Handbook [in Russian], Naukova Dumka, Kiev, USSR (1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ryndin.

Additional information

Translated from manuscript first submitted on August 27, 2013 and in final form on October 28, 2013.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryndin, E.A., Isaeva, A.S. Numerical Modeling of Thermomechanical Stresses Generated in a Thin Film Under Laser-Pulse Action. J Russ Laser Res 35, 326–332 (2014). https://doi.org/10.1007/s10946-014-9433-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-014-9433-4

Keywords

  • mathematical model
  • thermoelasticity equation
  • heat equation
  • mechanical stress