Journal of Russian Laser Research

, Volume 35, Issue 2, pp 119–123 | Cite as

Mathematical Modeling of the Au-Doping Effect on the Radiative Properties of Porous Polymers in Experiments with Laser and Heavy-Ion Beams

  • N. Yu. OrlovEmail author
  • O. B. Denisov
  • G. A. Vergunova
  • O. N. Rozmej


We present results of a theoretical study of the radiative opacity characteristics of plasmas produced by indirect heating of porous carbohydrate (CHO) substances (foams) by laser pulses. The plasma targets are created for further interaction with heavy-ion beams. We consider two different foam substances, namely, cellulose triacetate (TAC, C12H16O8) and TAC with a small admixture of gold. We discuss important features of the theoretical model, known as the ion model (IM) of plasma, which is used to study the radiative opacity characteristics of complex plasma compositions. Also we study the influence of a small admixture of gold on the radiative opacity characteristics and gas-dynamic processes in the plasma.


Radiative opacity Rosseland mean free path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Batani, R. Dtzulian, R. Redaelli, et al., Laser Part. Beams, 25, 127 (2007).CrossRefADSGoogle Scholar
  2. 2.
    A. Bret and C. Deutsch, Laser Part. Beams, 24, 269 (2006).ADSGoogle Scholar
  3. 3.
    S. Yu. Gus’kov, Laser Part. Beams, 23, 255 (2005).ADSGoogle Scholar
  4. 4.
    H. Hora, Laser Part. Beams, 25, 37 (2007).CrossRefADSGoogle Scholar
  5. 5.
    T. Someya, K. Miyazawa, T. Kikuchi, and S. Kawata, Laser Part. Beams, 24, 359 (2006).CrossRefGoogle Scholar
  6. 6.
    O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, et al., Plasma Phys. Rep., 31, 684 (2005).CrossRefADSGoogle Scholar
  7. 7.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, Mineola, NY (2002).Google Scholar
  8. 8.
    P. Adamek, O. Renner, L. Drska, et al., Laser Part. Beams, 24, 511 (2006).CrossRefGoogle Scholar
  9. 9.
    D. H. H. Hoffmann, K. Weyrich, H. Wahl, et al., Phys. Rev. A, 42, 2313 (1990).CrossRefADSGoogle Scholar
  10. 10.
    D. H. H. Hoffmann, A. Blazevic, P. Ni, et al., Laser Part. Beams, 23, 47 (2005).CrossRefADSGoogle Scholar
  11. 11.
    A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, et al., Laser Part. Beams, 24, 283 (2006).CrossRefADSGoogle Scholar
  12. 12.
    O. N. Rosmej, N. Zhidkov, V. Vatulin, et al., GSI Sci. Rep., 387 (2009).Google Scholar
  13. 13.
    G. A. Vergunova, S. Yu. Gus’kov, V. B. Rozanov, and O. Rosmej, J. Russ. Laser Res., 31, 509 (2010).CrossRefGoogle Scholar
  14. 14.
    G. A. Vergunova, V. B. Rozanov, O. B. Denisov, et al., Plasma Phys. Rep., 39, 755 (2013).CrossRefADSGoogle Scholar
  15. 15.
    R. Feynman, N. Metropolis, and E. Teller, Phys. Rev., 75, 73 (1949).CrossRefGoogle Scholar
  16. 16.
    B. F. Rozsnyai, Phys. Rev. A, 5, 1137 (1972).CrossRefADSGoogle Scholar
  17. 17.
    A. F. Nikiforov and V. B. Uvarov, “The equation of state of high-temperature matter based on self-consistent field equations” [in Russian], Numerical Methods of Fluid Mechanics, Bulletin of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia (1973), Vol. 4, p. 114.Google Scholar
  18. 18.
    B. F. Rozsnyai, J. Quantum Spectrosc. Radiat. Transfer, 27, 211 (1982).CrossRefADSGoogle Scholar
  19. 19.
    J. Zeng, F. Jin, and J. Yuan, Frontiers of Physics in China, 1, 468 (2006).CrossRefADSGoogle Scholar
  20. 20.
    N. Yu. Orlov and V. E. Fortov, Plasma Phys. Rep., 27, 44 (2001).CrossRefADSGoogle Scholar
  21. 21.
    N. Yu. Orlov, Laser Part. Beams, 15, 627 (1997).CrossRefADSGoogle Scholar
  22. 22.
    N. Yu. Orlov, USSR Comput. Math. Math. Phys., 27, 64 (1987).CrossRefzbMATHGoogle Scholar
  23. 23.
    D. A. Frank-Kamenetskii, Physical Processes in Stellar Interiors [in Russian], Fizmatgiz, Moscow (1959), [English translation: Israel Program for Scientific Translations, Jerusalem (1962)].Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Yu. Orlov
    • 1
    Email author
  • O. B. Denisov
    • 1
  • G. A. Vergunova
    • 2
  • O. N. Rozmej
    • 3
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations