Skip to main content
Log in

Quantized Magnetic Flux in the Bohr–Sommerfeld Model

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Based on the Bohr–Sommerfeld model, we investigate the quantization of magnetic flux through the electronic orbits together with its dependence on additional sources of magnetic fields. The additional magnetic field causes changes of the angular momentum and hence shifts of the energy of the atomic levels. We study this effect for the cases of the Zeeman effect, where the source is an external homogeneous magnetic field, and the hyperfine interaction, where the source is the field of the magnetic moment of the nucleus. We discuss a model for the handling of the different angular momentum contributions for which the energy shifts due to the Zeeman effect and the magnetic dipole contribution to the hyperfine interaction can be reproduced quite well. The meaning of “spin,” however, changes within this approach drastically. The unusual Landé g-factor of the electron is discussed to be the result of a reduced ground-state angular momentum of the electron in combination with the field of the magnetic moment of the electron rather than an intrinsic property of the electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Saglam and B. Boyacioglu, J. Russ. Laser Res., 28, 142 (2007).

    Article  Google Scholar 

  2. M. Saglam, B. Boyacioglu, Z. Saglam, and K. K. Wan, J. Russ. Laser Res., 28, 267 (2007).

    Article  Google Scholar 

  3. M. Saglam, B. Boyacioglu, Z. Saglam, et al., arXiv: physics/0608165v1 [physics.atom-ph] (2006).

  4. W.-D. R. Stein, Int. J. Theor. Phys., 51, 1698 (2012).

    Article  MATH  Google Scholar 

  5. F. London, Superfluids, John Wiley, New York (1950), Vol. I, p. 152.

  6. L. Onsager, in: Proceedings of the International Conference on Theoretical Physics (Kyoto & Tokyo, September 1953), Science Council of Japan, Tokyo (1954), p. 935.

  7. R. Doll and M. Näbauer, Phys. Rev. Lett., 7, 51 (1961).

    Article  ADS  Google Scholar 

  8. B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett., 7, 43 (1961).

    Article  ADS  Google Scholar 

  9. M. Saglam and B. Boyacioglu, Int. J. Mod. Phys. B, 16, 607 (2002).

    Article  ADS  Google Scholar 

  10. L. Onsager, Philos. Mag., 43, 1006 (1952).

    Google Scholar 

  11. M. Peshkin, I. Talmi, and L. J. Tassie, Ann. Phys., 12, 426 (1961).

    Article  ADS  MATH  Google Scholar 

  12. F. Wilczek, Phys. Rev. Lett., 48, 1144 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  13. W. C. Henneberger, Lett. Math. Phys., 11, 309 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Q. Liang and X. X. Ding, Phys. Rev. Lett., 60, 836 (1988).

    Article  ADS  Google Scholar 

  15. A. Sommerfeld, Ann. Phys., 51, 1 (1916).

    Article  MathSciNet  Google Scholar 

  16. L. J. Tassie and L. Peshkin, Ann. Phys., 16, 177 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S. M. Al-Jaber, X. Zhu, and W. C. Henneberger, Eur. J. Phys., 12, 268 (1991).

    Article  Google Scholar 

  18. A. A. Svidzinsky, M. O. Scully, and D. R. Herschbach, Phys. Rev. Lett., 95, 080401 (2005).

    Article  ADS  Google Scholar 

  19. A. A. Svidzinsky, S. A. Chin, and M. O. Scully, Phys. Lett. A, 355, 373 (2006).

    Article  ADS  Google Scholar 

  20. A. Svidzinsky, G. Chen, S. Chin, et al., Int. Rev. Phys. Chem., 27, 665 (2008).

    Article  Google Scholar 

  21. D. R. Herschbach, M. O. Scully, and A. A. Svidzinsky, Phys. J., 12, 37 (2013).

    Google Scholar 

  22. A. Sommerfeld, Atombau und Spektrallinien I, 8th ed., Friedr. Vieweg & Sohn, Braunschweig (1960).

    Google Scholar 

  23. A. E. Kramida, At. Data Nucl. Data Tables, 96, 586 (2010).

    Article  ADS  Google Scholar 

  24. S. G. Karshenboim, Phys. Rep., 422, 1 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter R. Stein.

Additional information

Manuscript submitted by the author in English on September 23, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, WD.R. Quantized Magnetic Flux in the Bohr–Sommerfeld Model. J Russ Laser Res 34, 553–564 (2013). https://doi.org/10.1007/s10946-013-9387-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-013-9387-y

Keywords

Navigation