Skip to main content

Quaternion Representation and Symplectic Spin Tomography

Abstract

Quantum tomography for continuous variables is based on the symplectic transformation group acting in the phase space. A particular case of symplectic tomography is optical tomography related to the action of a special orthogonal group. In the tomographic description of spin states, the connection between special unitary and special orthogonal groups is used. We analyze the representation for spin tomography using the Cayley–Klein parameters and discuss an analog of symplectic tomography for discrete variables. We propose a representation for tomograms of discrete variables through quaternions and employ the qubit-state tomogram to illustrate the method elaborated.

This is a preview of subscription content, access via your institution.

References

  1. C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).

    MathSciNet  Article  MATH  Google Scholar 

  2. P. W. Shor, SIAM J. Comput., 26, 1484 (1997).

    MathSciNet  Article  MATH  Google Scholar 

  3. S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995).

    ADS  Article  Google Scholar 

  4. S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  5. V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  6. V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).

    ADS  Article  Google Scholar 

  7. V. I. Man’ko, O. V. Man’ko, and S. S. Safonov, Theor. Math. Phys., 115, 520 (1998).

    MathSciNet  Article  MATH  Google Scholar 

  8. V. A. Andreev and V. I. Man’ko, J. Opt. B: Quantum Semiclass. Opt., 2, 122 (2000).

    MathSciNet  ADS  Article  Google Scholar 

  9. A. S. Arkhipov, Yu. E. Lozovik, V. I. Man’ko, and V. A. Sharapov, Theor. Math. Phys., 142, 311 (2005).

    MathSciNet  MATH  Google Scholar 

  10. V. N. Chernega and V. I. Man’ko, J. Russ. Laser Res., 28, 103 (2007).

    Article  Google Scholar 

  11. A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 79, 065013 (2009).

    ADS  Article  Google Scholar 

  12. M. A. Man’ko, Theor. Math. Phys., 168, 985 (2011).

    Article  Google Scholar 

  13. A. K. Fedorov and S. O. Yurchenko, J. Phys.: Conf. Ser., 414, 012040 (2013).

    ADS  Article  Google Scholar 

  14. A. K. Fedorov, Phys. Lett. A, 377, 2320 (2013).

    ADS  Article  Google Scholar 

  15. S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 34, 14 (2013).

    Article  Google Scholar 

  16. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett., 70, 1244 (1993).

    ADS  Article  Google Scholar 

  17. A. I. Lvovsky and M. G. Raymer, Rev. Mod. Phys., 81, 299 (2009).

    ADS  Article  Google Scholar 

  18. M. Lobino, D. Korystov, C. Kupchak, et al., Science, 322, 563 (2008).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  19. A. Anis and A. I. Lvovsky, New J. Phys., 14, 105021 (2012).

    MathSciNet  Article  Google Scholar 

  20. E. P. Wigner, Phys. Rev., 40, 749 (1932).

    ADS  Article  Google Scholar 

  21. E. Husimi, Proc. Phys. Math. Soc. Jpn, 23, 264 (1940).

    Google Scholar 

  22. R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963).

    MathSciNet  ADS  Article  Google Scholar 

  23. E. C. G. Sudarshan, Phys. Rev. Lett., 10, 277 (1963).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  24. K. E. Cahill and R. J. Glauber, Phys. Rev. A, 177, 1882 (1969).

    ADS  Article  Google Scholar 

  25. J. J. Hamilton, J. Math. Phys., 38, 4914 (1997).

    MathSciNet  ADS  Article  Google Scholar 

  26. G. M. D’Ariano, L. Maccone, and M. Paini, J. Opt. B: Quantum Semiclass. Opt., 5, 77 (2003).

    ADS  Article  Google Scholar 

  27. S. N. Filippov, “Quantum states and dynamics of spin systems and electromagnetic field in the tomographic-probability representation,” Ph.D. Thesis, Moscow Institute of Physics and Technology [http://filippovsn.fizteh.ru/about/biography/Filippov-Abstract-Thesis.pdf (2012)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey K. Fedorov.

Additional information

Manuscript submitted by the authors in English on August 11, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fedorov, A.K., Kiktenko, E.O. Quaternion Representation and Symplectic Spin Tomography. J Russ Laser Res 34, 477–487 (2013). https://doi.org/10.1007/s10946-013-9378-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-013-9378-z

Keywords

  • quantum tomography
  • spin tomograms
  • classical groups
  • quaternions