Mathematical modeling of the heating of a fast ignition target by an ion beam

Abstract

We develop a BIN computer code for simulating the interaction of a monochromatic ion beam with a plasma, which takes into account changes in the spatial distribution of the heated-plasma temperature. This enables us to calculate the heating of both homogeneous and inhomogeneous plasmas with parameters corresponding to their real spatial distributions at the time of maximum compression of the inertial confinement fusion (ICF) target. We present the results of a numerical simulation using the BIN code for the heating of a homogeneous deuterium–tritium plasma by a short pulse of monochromatic ions at various ion velocity and plasma–electron thermal velocity ratios. We also present the results of calculations for the heating of an inhomogeneous plasma of a non-cryogenic target formed as a beryllium deuteride–tritide shell by beams of light, medium, and heavy ions. As the initial distributions, we use the results of numerical simulations for such a target, precompressed by a laser pulse (carried out at the M. V. Keldysh Institute of Applied Mathematics using the DIANA code). We demonstrate the possibility of forming the central ignitor with the parameters sufficient for igniting the targets by beams of ions with energies E ~ 100 400 MeV/u and specific energy densities of the beam Q ∼ 520 GJ/cm2. The required specific energy density drops with increase in the ion energy; however, due to the increased path length, larger-charge ions have to be used.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res., 13, 396 (1992).

    Article  Google Scholar 

  2. 2.

    M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plasmas, 1, 1626 (1994).

    ADS  Article  Google Scholar 

  3. 3.

    S. Yu. Gus’kov and V. E. Sherman, Electronic Scientific Journal “Investigated in Russia”, 113, 1486 (2009) [http://zhurnal.ape.relarn.ru/articles/2009/113.pdf].

  4. 4.

    S. Yu. Gus’kov, D. V. Il’in, I. Limpouch et al., Plasma Phys. Rep., 36, 473 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    O. R. Gasparyan, S. Yu. Gus’kov, and V. E. Sherman, Electronic Scientific Journal “Investigated in Russia”, 062, 815 (2011) [http://zhurnal.ape.relarn.ru/articles/2011/062.pdf].

  6. 6.

    N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeyev et al., Vopr. Atom. Nauki Tekh., Series “Methods and Programs for Numerical Simulation of Mathematical Physics Problems,” 2, 38 (1982).

  7. 7.

    S. Yu. Gus’kov, O. N. Krokhin, and V. B. Rozanov, Nucl. Fusion, 16, 957 (1976).

    ADS  Article  Google Scholar 

  8. 8.

    S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep., 37, 1020 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    S. Yu. Gus’kov, A. A. Levkovsky, D. V. Il’in et al., Sov. J. Plasma Phys., 17, 30 (1991).

    Google Scholar 

  10. 10.

    B. J. Albright, M. J. Schmitt, J. C. Fernandez, et al., J. Phys.: Conf. Ser., 112, 022029 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, et al., Laser Part. Beams, 16, 129 (1998).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. E. Sherman.

Additional information

Translated from manuscript submitted on December 11, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gasparyan, O.R., Gus’kov, S.Y., Il’in, D.V. et al. Mathematical modeling of the heating of a fast ignition target by an ion beam. J Russ Laser Res 34, 33–40 (2013). https://doi.org/10.1007/s10946-013-9321-3

Download citation

Keywords

  • inertial confinement fusion
  • fast ignition
  • high-energy ion beam
  • plasma stopping power