Abstract
We introduce a simple algebraic approach to the study of multipartite entanglement for pure states together with a class of suitable functionals able to detect the entanglement. On this basis, we reproduce some known results. Indeed, by investigating the properties of the introduced functionals, we show that a subset of such class is strictly connected to the purity. Moreover, we provide a direct and basic solution to the problem of simultaneous maximization of three appropriate functionals for three-qubit states, confirming that the simultaneous maximization of the entanglement for all possible bipartitions is compatible only with the structure of the GHZ states.
Similar content being viewed by others
References
V. Vedral and M. B. Plenio, Phys. Rev. A, 57, 1619 (1997).
A. Peres, Phys. Rev. Lett., 77, 1413 (1996).
P. Horodecki, Phys. Lett. A, 232, 333 (1997).
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).
S. Hill and W. K. Wotters, Phys. Rev. Lett., 78, 5022 (1997).
W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998).
L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys., 80, 517 (2008).
V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Phys. A: Math. Gen., 35, 7137 (2002).
P. Facchi, Rend. Lincei Mat. Appl., 20, 25 (2009).
C. Sabin and G. Garcia-Alcaine, Eur. Phys. J. D, 48, 435 (2008).
F. Anzà, B. Militello, and A. Messina, J. Phys. B: At. Mol. Opt. Phys., 43, 205501 (2010).
V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A, 61, 052306 (2000).
E. Jung, D. Park, and J. W. Son, Phys. Rev. A, 80, 010301 (2009).
H. A. Carteret and A. Sudbery, J. Phys. A: Math. Gen., 33, 4981 (2000).
H. Mäkelä and A. Messina, Phys. Rev. A, 81, 012326 (2010).
A. Miyake, Phys. Rev. A, 67, 012108 (2003).
M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayar, Phys. Rev. Lett., 104, 210501 (2010).
B. Militello and A. Messina, Phys. Rev. A, 83, 042305 (2011).
U. Fano, Rev. Mod. Phys., 29, 74 (1957).
G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A, 68, 022318 (2003).
S. J. Akhtarshenas, J. Phys. A: Math. Gen., 38, 6777 (2005).
F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett., 92, 167902 (2004).
F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett., 95, 260502 (2005).
S. Shelly Sharma and N. K. Sharma, Phys. Rev. A, 82, 012340 (2010).
J. Schlienz and G. Mahler, Phys. Lett. A, 224, 39 (1996).
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted by the authors in English on December 4, 2012.
Rights and permissions
About this article
Cite this article
Di Martino, S., Militello, B. & Messina, A. An algebraic approach to the study of multipartite entanglement. J Russ Laser Res 34, 22–32 (2013). https://doi.org/10.1007/s10946-013-9320-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10946-013-9320-4