Skip to main content
Log in

An algebraic approach to the study of multipartite entanglement

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We introduce a simple algebraic approach to the study of multipartite entanglement for pure states together with a class of suitable functionals able to detect the entanglement. On this basis, we reproduce some known results. Indeed, by investigating the properties of the introduced functionals, we show that a subset of such class is strictly connected to the purity. Moreover, we provide a direct and basic solution to the problem of simultaneous maximization of three appropriate functionals for three-qubit states, confirming that the simultaneous maximization of the entanglement for all possible bipartitions is compatible only with the structure of the GHZ states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Vedral and M. B. Plenio, Phys. Rev. A, 57, 1619 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Peres, Phys. Rev. Lett., 77, 1413 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P. Horodecki, Phys. Lett. A, 232, 333 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Hill and W. K. Wotters, Phys. Rev. Lett., 78, 5022 (1997).

    Article  ADS  Google Scholar 

  6. W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998).

    Article  ADS  Google Scholar 

  7. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys., 80, 517 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Phys. A: Math. Gen., 35, 7137 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P. Facchi, Rend. Lincei Mat. Appl., 20, 25 (2009).

    MathSciNet  MATH  Google Scholar 

  10. C. Sabin and G. Garcia-Alcaine, Eur. Phys. J. D, 48, 435 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  11. F. Anzà, B. Militello, and A. Messina, J. Phys. B: At. Mol. Opt. Phys., 43, 205501 (2010).

    Article  ADS  Google Scholar 

  12. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A, 61, 052306 (2000).

    Article  ADS  Google Scholar 

  13. E. Jung, D. Park, and J. W. Son, Phys. Rev. A, 80, 010301 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  14. H. A. Carteret and A. Sudbery, J. Phys. A: Math. Gen., 33, 4981 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H. Mäkelä and A. Messina, Phys. Rev. A, 81, 012326 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Miyake, Phys. Rev. A, 67, 012108 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayar, Phys. Rev. Lett., 104, 210501 (2010).

    Article  ADS  Google Scholar 

  18. B. Militello and A. Messina, Phys. Rev. A, 83, 042305 (2011).

    Article  ADS  Google Scholar 

  19. U. Fano, Rev. Mod. Phys., 29, 74 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A, 68, 022318 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  21. S. J. Akhtarshenas, J. Phys. A: Math. Gen., 38, 6777 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett., 92, 167902 (2004).

    Article  ADS  Google Scholar 

  23. F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett., 95, 260502 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Shelly Sharma and N. K. Sharma, Phys. Rev. A, 82, 012340 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Schlienz and G. Mahler, Phys. Lett. A, 224, 39 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Di Martino.

Additional information

Manuscript submitted by the authors in English on December 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Martino, S., Militello, B. & Messina, A. An algebraic approach to the study of multipartite entanglement. J Russ Laser Res 34, 22–32 (2013). https://doi.org/10.1007/s10946-013-9320-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-013-9320-4

Keywords

Navigation