Skip to main content
Log in

Noncommutative tomography: A tool for data analysis and signal processing

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Tomograms, a generalization of the Radon transform to arbitrary pairs of noncommuting operators, are positive bilinear transforms with a rigorous probabilistic interpretation that provide a full characterization of the signal and are robust in the presence of noise. Tomograms, based on the time–frequency operator pair, were used in the past for a robust characterization of many different signals. Here we provide an explicit construction of tomogram transforms for many other pairs of noncommuting operators in one and two dimensions and describe how they are used for denoising, component separation, and filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Poularikas (Ed.), The Transforms and Applications Handbook, CRC Press & IEEE Press, Boca Raton, Florida (1996).

    MATH  Google Scholar 

  2. K.-B. Wolf, Integral Transforms in Science and Engineering, Plenum Press, New York (1979).

    MATH  Google Scholar 

  3. J. B. J. Fourier, Théorie Analytique de la Chaleur, in: G. Darbous (Ed.), Oeuvres de Fourier, Gauthiers-Villars, Paris (1888), Tome premier.

  4. J. M. Combes, A. Grossmann, and Ph. Tchamitchian (Eds.), Wavelets, 2nd ed., Springer, Berlin (1990).

    Google Scholar 

  5. I. Daubechies, “The wavelet transform: time–frequency localization and signal analysis,” IEEE Trans. Inform. Theory, 36, No. 5, 961–1005 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C. K. Chui (Ed.), Wavelets: A Tutorial. Theory and Applications, Academic, Boston (1992), Vol. 2.

  7. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., 40, 749–759 (1932).

    Article  ADS  Google Scholar 

  8. J. Ville, “Théorie et applications de la notion de signal analytique,” Cables et Transmission A, 2, 61–74 (1948).

    Google Scholar 

  9. L. Cohen, “Generalized phase-space distribution functions,” J. Math. Phys., 7, 781–806 (1966).

    Article  ADS  Google Scholar 

  10. L. Cohen, “Time–frequency distributions. A review,” Proc. IEEE, 77, 941–981 (1989).

    Article  ADS  Google Scholar 

  11. S. Qian and D. Chen, Joint Time–Frequency Analysis, Prentice-Hall, Englewood Cliffs, New Jersy (1995).

    Google Scholar 

  12. K. Husimi, “Some formal properties of the density matrix,” Proc. Phys. Mat. Soc. Jpn, 22, 264–314 (1940).

    Google Scholar 

  13. Y. Kano, “A new phase-space distribution function in the statistical theory of the electromagnetic field,” J. Math. Phys., 6, 1913–1915 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  14. V. I. Man’ko and R. Vilela Mendes, “Noncommutative time–frequency tomography,” Phys. Lett. A, 263, 53–59 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. A. Man’ko, V. I. Man’ko, and R. Vilela Mendes, “Tomograms and other transforms: A unified view,” J. Phys. A: Math. Gen., 34, 8321–8332 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. R. Deans, The Radon Transform and Some of Its Applications, John Wiley & Sons, New York (1983).

    MATH  Google Scholar 

  17. J. C. Woods and D. T. Barry, “Linear signal synthesis using the Radon–Wigner transform,” IEEE Trans. Signal Process., 42, 2105–2111 (1994).

    Article  ADS  Google Scholar 

  18. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andrés, “Radon–Wigner display: a compact optical implementation with a single varifocal lens,” Appl. Opt., 36, 8363–8369 (1997).

    Article  ADS  Google Scholar 

  19. M. A. Man’ko, V. I. Man’ko, and R. V. Mendes, “A probabilistic operator symbol framework for quantum information,” J. Russ. Laser Res., Vol. 27, pp. 507–532 (2006).

    Google Scholar 

  20. F. Briolle, R. Lima, V. I. Man’ko, and R. Vilela Mendes, “A tomographic analysis of reflectometry data I: Component factorization,” Meas. Sci. Technol., 20, 105501 (2009).

    Article  ADS  Google Scholar 

  21. F. Briolle, R. Lima, and R. Vilela Mendes, “A tomographic analysis of reflectometry data II: The phase derivative,” Meas. Sci. Technol., 20, 105502 (2009).

    Article  ADS  Google Scholar 

  22. B. Ricaud, F. Briolle and F. Clairet, “Analysis and separation of time–frequency components in signals with chaotic behavior,” arXiv:1003.0734.

  23. C. Aguirre, P. Pascual, D. Campos, and E. Serrano, “Single neuron transient activity detection by means of tomography,” BMC Neuroscience 2011, 12 (Suppl. 1), p. 297.

  24. J. Bertrand and P. Bertrand, “A class of affine Wigner functions with extended covariance properties,” J. Math. Phys., 33, 2515–2527 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. P. Goncalvés and R. G. Baraniuk, “A pseudo-Bertrand distribution for time–scale analysis,” IEEE Signal Process. Lett., 3, 82–84 (1996).

    Article  ADS  Google Scholar 

  26. M. Asorey, P. Facchi, V. I. Man’ko, et al., “Generalized tomographic maps,” Phys. Rev. A, 77, 042115 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  27. E. C. G. Sudarshan, “Equivalence of semiclassical and quantum-mechanical descriptions of statistical light beams,” Phys. Rev. Lett., 10, 277–279 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. R. J. Glauber, “Coherent and incoherent states of the radiation fields,” Phys. Rev., 131, 2766–2788 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  29. R. J. Glauber, “Photon correlations,” Phys. Rev. Lett., 10, 84–86 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  30. O. V. Man’ko, V. I. Man’ko, and G. Marmo, “Alternative commutation relation, star-products and tomography,” J. Phys. A: Math. Gen., 35, 1–21 (2002).

    Google Scholar 

  31. M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: Foundation and 1-D time,” IEEE Trans. Signal Process., 56, 3572–3585 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: 1-D space,” IEEE Trans. Signal Process., 56, 3586–3599 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  33. J. A. Dente, R. Vilela Mendes, A. Lambert, and R. Lima, “The bi-orthogonal decomposition in image processing: Signal analysis and texture segmentation,” Signal Process.: Image Commun., 8, 131–148 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vilela Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briolle, F., Man’ko, V.I., Ricaud, B. et al. Noncommutative tomography: A tool for data analysis and signal processing. J Russ Laser Res 33, 103–121 (2012). https://doi.org/10.1007/s10946-012-9265-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-012-9265-z

Keywords

Navigation