Abstract
We present quadratic dynamic invariants and evaluate the Berry phase for the time-dependent Schrödinger equation with the most general variable quadratic Hamiltonian.
This is a preview of subscription content, access via your institution.
References
N. Lanfear, R. M. Lopez, and S. K. Suslov, J. Russ. Laser Res., 32, 352 (2011) [arXiv:11002.5119v2 [math-ph] 20 Jul 2011].
M. V. Berry, J. Phys. A: Math. Gen., 18, 15 (1985).
R. Cordero-Soto, R. M. Lopez, E. Suazo, and S. K. Suslov, Lett. Math. Phys., 84, 159 (2008).
J. H. Hannay, J. Phys. A: Math. Gen., 18, 221 (1985).
P. G. L. Leach, J. Phys. A: Math. Gen., 23, 2695 (1990).
C. F. Lo, Eur. Phys. Lett., 24, 319 (1993).
K. B. Wolf, SIAM J. Appl. Math., 40, 419 (1981).
J-B. Xu and X-Ch. Gao, Phys. Scr., 54, 137 (1996).
K-H. Yeon, K-K. Lee, Ch-I. Um, et al., Phys. Rev. A, 48, 2716 (1993).
A. V. Zhukov, Phys. Lett. A, 256, 325 (1999).
M. V. Berry, Proc. Roy. Soc. London, A392, 45 (1984).
B. Simon, Phys. Rev. Lett., 51, 2167 (1983).
F. Wilczek and A. Zee, Phys. Rev. Lett., 52, 2111 (1984).
M. H. Engineer and G. Ghosh, J. Phys. A: Math. Gen., 21, L95 (1988).
X-Ch. Gao, J-B. Xu, and T-Zh. Qian, Ann. Phys., 204, 235 (1990).
D. H. Kobe, J. Phys. A: Math. Gen., 23, 4249 (1990).
D. H. Kobe, J. Phys. A: Math. Gen., 24, 2763 (1991).
D. A. Morales, J. Phys. A: Math. Gen., 21, L889 (1988).
D. B. Monteoliva, H. J. Korsch, and J. A. N´u˜nez, J. Phys. A: Math. Gen., 27, 6897 (1994).
S. K. Suslov, Phys. Scr., 81, 055006 (2010) [arXiv:1002.0144v6 [math-ph] 11 Mar 2010].
V. V. Dodonov and V. I. Man’ko, “Adiabatic invariants, correlated states and Berry‘s phase” in: B. Markovski and S. I. Vinitsky (Eds.), Topological Phases in Quantum Theory, Proceedings of the International Seminar, Dubna, SU, September 1988, World Scientific, Singapore (1989), p. 74.
S. S. Mizrahi, Phys. Lett. A, 138, 465 (1989).
J. M. Cerveró and J. D. Lejarreta, J. Phys. A: Math. Gen., 22, L663 (1989).
R. Cordero-Soto, E. Suazo, and S. K. Suslov, J. Phys. Math., 1, S090603 (2009).
R. Cordero-Soto, E. Suazo, and S. K. Suslov, Ann. Phys., 325, 1884 (2010).
R. Cordero-Soto and S. K. Suslov, Theor. Math. Phys., 162, 286 (2010) [arXiv:0808.3149v9 [mathph] 8 Mar 2009].
V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Int. J. Theor. Phys., 14, 37 (1975).
R. P. Feynman, “The principle of least action in quantum mechanics,” Ph.D. Thesis, Princeton University, USA (1942) [reprinted in: L. M. Brown (Ed.), Feynman’s Thesis – A New Approach to Quantum Theory, World Scientific, Singapore (2005), p. 1].
R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948) [reprinted in: L. M. Brown (Ed.), Feynman’s Thesis – A New Approach to Quantum Theory, World Scientific, Singapore (2005), p. 71].
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill, New York (1965).
R. M. Lopez and S. K. Suslov, Rev. Mex. F´ıs., 55, 195 (2009) [arXiv:0707.1902v8 [math-ph] 27 Dec 2007].
M. Meiler, R. Cordero-Soto and S. K. Suslov, J. Math. Phys., 49, 072102 (2008) [arXiv:0711.0559v4 [math-ph] 5 Dec 2007].
E. Suazo and S. K. Suslov, “Cauchy problem for Schr¨odinger equation with variable quadratic Hamiltonians” (under preparation).
N. Lanfear and S. K. Suslov, “The time-dependent Schr¨odinger equation, Riccati equation, and Airy functions,” arXiv:0903.3608v5 [math-ph] 22 Apr 2009.
R. Cordero-Soto and S. K. Suslov, J. Phys. A: Math. Theor., 44, 015101 (2011) [arXiv:1006.3362v3 [math-ph] 2 Jul 2010].
G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge (1944).
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge (1927).
E. Suazo, S. K. Suslov, and J. M. Vega-Guzmán, N.Y. J. Math., 17a, 225 (2011).
E. Suazo, S. K. Suslov, and J. M. Vega-Guzmán, “The Riccati system and a diffusion-type equation,” arXiv:1102.4630v1 [math-ph] 22 Feb 2011.
V. P. Ermakov, “Second-order differential equations. Conditions of complete integrability” [in Russian], Izvestiya Universiteta Kiev, Series III, 9, 1 (1880) [English translation: Appl. Anal. Discrete Math., 2, 123 (2008)].
P. G. L. Leach and K. Andriopoulos, Appl. Anal. Discrete Math., 2, 146 (2008).
S. Flügge, Practical Quantum Mechanics, Springer Verlag, Berlin (1999).
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, Oxford (1977).
E. Merzbacher, Quantum Mechanics, 3rd ed., John Wiley & Sons, New York (1998).
A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer Verlag, Berlin, New York (1991).
I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems, Nauka, Moscow, (1979) [in Russian].
V. V. Dodonov and V. I. Man’ko, “Invariants and correlated states of nonstationary quantum systems” [in Russian], in: Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of the P. N. Lebedev Physical Institute, Nauka, Moscow, Vol. 183, p. 71 (1987) [English translation: Nova Science, Commack, New York (1989), p. 103].
U. Niederer, Helv. Phys. Acta, 45, 802 (1972).
U. Niederer, Helv. Phys. Acta, 46, 191 (1973).
L. Vinet and A. Zhedanov, J. Phys. A: Math. Theor., 44, 355201 (2011).
V. V. Dodonov, J. Phys. A: Math. Gen., 33, 7721 (2000).
I. A. Malkin, V. I. Man’ko, and D. A. Trifonov, J. Math. Phys., 14, 576 (1973).
H. R. Lewis, Jr. and W. B. Riesenfeld, J. Math. Phys., 10, 1458 (1969).
C. C. Gerry, Phys. Rev. A, 39, 3204 (1989).
L. Vinet, Phys. Rev. D, 37, 2369 (1988).
D. Xiao, M-Ch. Chang, and Q. Niu, Rev. Mod. Phys., 82, 1959 (2010).
S. I. Vinitski\( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i}} \), V. L. Derbov, V. M. Dubovik, et al., Uspekhi Fiz. Nauk, 160, 1 (1990) [Sov. Phys. - Uspekhi, 33, 403 (1990)].
Yu. F. Smirnov and K. V. Shitikova, Sov. J. Particles Nuclei, 8, 344 (1977).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sanborn, B., Suslov, S.K. & Vinet, L. Dynamic invariants and the berry phase for generalized driven harmonic oscillators. J Russ Laser Res 32, 486–494 (2011). https://doi.org/10.1007/s10946-011-9238-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10946-011-9238-7
Keywords
- time-dependent Schrödinger equation
- generalized harmonic oscillators
- Green function
- dynamic invariants
- Berry phase
- Ermakov-type system