Skip to main content

Dynamic invariants and the berry phase for generalized driven harmonic oscillators

Abstract

We present quadratic dynamic invariants and evaluate the Berry phase for the time-dependent Schrödinger equation with the most general variable quadratic Hamiltonian.

This is a preview of subscription content, access via your institution.

References

  1. N. Lanfear, R. M. Lopez, and S. K. Suslov, J. Russ. Laser Res., 32, 352 (2011) [arXiv:11002.5119v2 [math-ph] 20 Jul 2011].

    Google Scholar 

  2. M. V. Berry, J. Phys. A: Math. Gen., 18, 15 (1985).

    Article  ADS  MATH  Google Scholar 

  3. R. Cordero-Soto, R. M. Lopez, E. Suazo, and S. K. Suslov, Lett. Math. Phys., 84, 159 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. H. Hannay, J. Phys. A: Math. Gen., 18, 221 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  5. P. G. L. Leach, J. Phys. A: Math. Gen., 23, 2695 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C. F. Lo, Eur. Phys. Lett., 24, 319 (1993).

    Article  ADS  Google Scholar 

  7. K. B. Wolf, SIAM J. Appl. Math., 40, 419 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. J-B. Xu and X-Ch. Gao, Phys. Scr., 54, 137 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. K-H. Yeon, K-K. Lee, Ch-I. Um, et al., Phys. Rev. A, 48, 2716 (1993).

    Article  ADS  Google Scholar 

  10. A. V. Zhukov, Phys. Lett. A, 256, 325 (1999).

    Article  ADS  Google Scholar 

  11. M. V. Berry, Proc. Roy. Soc. London, A392, 45 (1984).

    ADS  Google Scholar 

  12. B. Simon, Phys. Rev. Lett., 51, 2167 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Wilczek and A. Zee, Phys. Rev. Lett., 52, 2111 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  14. M. H. Engineer and G. Ghosh, J. Phys. A: Math. Gen., 21, L95 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  15. X-Ch. Gao, J-B. Xu, and T-Zh. Qian, Ann. Phys., 204, 235 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. D. H. Kobe, J. Phys. A: Math. Gen., 23, 4249 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. H. Kobe, J. Phys. A: Math. Gen., 24, 2763 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. D. A. Morales, J. Phys. A: Math. Gen., 21, L889 (1988).

    Article  ADS  Google Scholar 

  19. D. B. Monteoliva, H. J. Korsch, and J. A. N´u˜nez, J. Phys. A: Math. Gen., 27, 6897 (1994).

    Article  ADS  MATH  Google Scholar 

  20. S. K. Suslov, Phys. Scr., 81, 055006 (2010) [arXiv:1002.0144v6 [math-ph] 11 Mar 2010].

    Google Scholar 

  21. V. V. Dodonov and V. I. Man’ko, “Adiabatic invariants, correlated states and Berry‘s phase” in: B. Markovski and S. I. Vinitsky (Eds.), Topological Phases in Quantum Theory, Proceedings of the International Seminar, Dubna, SU, September 1988, World Scientific, Singapore (1989), p. 74.

  22. S. S. Mizrahi, Phys. Lett. A, 138, 465 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  23. J. M. Cerveró and J. D. Lejarreta, J. Phys. A: Math. Gen., 22, L663 (1989).

    Article  ADS  Google Scholar 

  24. R. Cordero-Soto, E. Suazo, and S. K. Suslov, J. Phys. Math., 1, S090603 (2009).

    Article  Google Scholar 

  25. R. Cordero-Soto, E. Suazo, and S. K. Suslov, Ann. Phys., 325, 1884 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. R. Cordero-Soto and S. K. Suslov, Theor. Math. Phys., 162, 286 (2010) [arXiv:0808.3149v9 [mathph] 8 Mar 2009].

    Google Scholar 

  27. V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Int. J. Theor. Phys., 14, 37 (1975).

    Article  MathSciNet  Google Scholar 

  28. R. P. Feynman, “The principle of least action in quantum mechanics,” Ph.D. Thesis, Princeton University, USA (1942) [reprinted in: L. M. Brown (Ed.), Feynman’s Thesis – A New Approach to Quantum Theory, World Scientific, Singapore (2005), p. 1].

  29. R. P. Feynman, Rev. Mod. Phys., 20, 367 (1948) [reprinted in: L. M. Brown (Ed.), Feynman’s Thesis – A New Approach to Quantum Theory, World Scientific, Singapore (2005), p. 71].

  30. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill, New York (1965).

  31. R. M. Lopez and S. K. Suslov, Rev. Mex. F´ıs., 55, 195 (2009) [arXiv:0707.1902v8 [math-ph] 27 Dec 2007].

    Google Scholar 

  32. M. Meiler, R. Cordero-Soto and S. K. Suslov, J. Math. Phys., 49, 072102 (2008) [arXiv:0711.0559v4 [math-ph] 5 Dec 2007].

    Google Scholar 

  33. E. Suazo and S. K. Suslov, “Cauchy problem for Schr¨odinger equation with variable quadratic Hamiltonians” (under preparation).

  34. N. Lanfear and S. K. Suslov, “The time-dependent Schr¨odinger equation, Riccati equation, and Airy functions,” arXiv:0903.3608v5 [math-ph] 22 Apr 2009.

  35. R. Cordero-Soto and S. K. Suslov, J. Phys. A: Math. Theor., 44, 015101 (2011) [arXiv:1006.3362v3 [math-ph] 2 Jul 2010].

    Google Scholar 

  36. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge (1944).

    MATH  Google Scholar 

  37. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge (1927).

    MATH  Google Scholar 

  38. E. Suazo, S. K. Suslov, and J. M. Vega-Guzmán, N.Y. J. Math., 17a, 225 (2011).

    MATH  Google Scholar 

  39. E. Suazo, S. K. Suslov, and J. M. Vega-Guzmán, “The Riccati system and a diffusion-type equation,” arXiv:1102.4630v1 [math-ph] 22 Feb 2011.

  40. V. P. Ermakov, “Second-order differential equations. Conditions of complete integrability” [in Russian], Izvestiya Universiteta Kiev, Series III, 9, 1 (1880) [English translation: Appl. Anal. Discrete Math., 2, 123 (2008)].

  41. P. G. L. Leach and K. Andriopoulos, Appl. Anal. Discrete Math., 2, 146 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Flügge, Practical Quantum Mechanics, Springer Verlag, Berlin (1999).

    MATH  Google Scholar 

  43. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, Oxford (1977).

    Google Scholar 

  44. E. Merzbacher, Quantum Mechanics, 3rd ed., John Wiley & Sons, New York (1998).

  45. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer Verlag, Berlin, New York (1991).

    MATH  Google Scholar 

  46. I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems, Nauka, Moscow, (1979) [in Russian].

  47. V. V. Dodonov and V. I. Man’ko, “Invariants and correlated states of nonstationary quantum systems” [in Russian], in: Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of the P. N. Lebedev Physical Institute, Nauka, Moscow, Vol. 183, p. 71 (1987) [English translation: Nova Science, Commack, New York (1989), p. 103].

  48. U. Niederer, Helv. Phys. Acta, 45, 802 (1972).

    MathSciNet  Google Scholar 

  49. U. Niederer, Helv. Phys. Acta, 46, 191 (1973).

    Google Scholar 

  50. L. Vinet and A. Zhedanov, J. Phys. A: Math. Theor., 44, 355201 (2011).

    Article  MathSciNet  Google Scholar 

  51. V. V. Dodonov, J. Phys. A: Math. Gen., 33, 7721 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. I. A. Malkin, V. I. Man’ko, and D. A. Trifonov, J. Math. Phys., 14, 576 (1973).

    Article  ADS  Google Scholar 

  53. H. R. Lewis, Jr. and W. B. Riesenfeld, J. Math. Phys., 10, 1458 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  54. C. C. Gerry, Phys. Rev. A, 39, 3204 (1989).

    Article  ADS  Google Scholar 

  55. L. Vinet, Phys. Rev. D, 37, 2369 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  56. D. Xiao, M-Ch. Chang, and Q. Niu, Rev. Mod. Phys., 82, 1959 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  57. S. I. Vinitski\( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i}} \), V. L. Derbov, V. M. Dubovik, et al., Uspekhi Fiz. Nauk, 160, 1 (1990) [Sov. Phys. - Uspekhi, 33, 403 (1990)].

  58. Yu. F. Smirnov and K. V. Shitikova, Sov. J. Particles Nuclei, 8, 344 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei K. Suslov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanborn, B., Suslov, S.K. & Vinet, L. Dynamic invariants and the berry phase for generalized driven harmonic oscillators. J Russ Laser Res 32, 486–494 (2011). https://doi.org/10.1007/s10946-011-9238-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-011-9238-7

Keywords

  • time-dependent Schrödinger equation
  • generalized harmonic oscillators
  • Green function
  • dynamic invariants
  • Berry phase
  • Ermakov-type system