Skip to main content
Log in

Time refraction and the perturbed quantum vacuum

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We discuss the classical and quantum theory of time refraction in a generic nonstationary medium. The classical description is based on temporal Fresnel and Snell’s formulas, which are similar and in some sense symmetric from their spatial counterparts. Temporal mirror effects are considered. The quantum formulation of time refraction is based on time-dependent Bogoliubov transforms, describing the evolution of the creation and destruction field operators. Photon pair creation and the associated entanglement properties are discussed. The influence of boundary conditions, the connection of time refraction with the dynamic Casimir effect, and radiation from superluminal non-accelerated optical boundaries are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Mendonça, Theory of Photon Acceleration, Institute of Physics Publishers, Bristol (2001).

    Book  Google Scholar 

  2. V. V. Dodonov, Phys. Scr., 82, 038105 (2010).

    Article  ADS  Google Scholar 

  3. W. G. Unruh, Phys. Rev. D, 14, 870 (1976).

    Article  ADS  Google Scholar 

  4. N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge, UK (1982).

    Google Scholar 

  5. A. Guerreiro, J. Plasma Phys., 76, 833 (2010).

    Article  ADS  Google Scholar 

  6. J. T. Mendonça, A. Guerreiro, and A. M. Martins, Phys. Rev. A, 62, 033805 (2000).

    Article  ADS  Google Scholar 

  7. J. T. Mendonça, A. M. Martins, and A. Guerreiro, Phys. Rev. A, 68, 043801 (2003).

    Article  ADS  Google Scholar 

  8. H. B. G. Casimir, Proc. K. Ned. Akad.Wet. B, 51, 795 (1948).

    Google Scholar 

  9. S. W. Hawking, Nature, 248, 30 (1974).

    Article  ADS  Google Scholar 

  10. S. W. Hawking, Commun. Math. Phys., 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Guerreiro, J. T. Mendonça, and A. M. Martins, J. Opt. B: Quantum Semiclass. Opt., 7, S69 (2005).

    Article  ADS  Google Scholar 

  12. J. T. Mendonça and A. Guerreiro, Phys. Rev. A, 72, 063805 (2005).

    Article  ADS  Google Scholar 

  13. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma, Gordon and Breach, New York (1961), ch. IV.

  14. V. V. Dodonov, A. B. Klimov, and D. E. Nikonov, Phys. Rev. A, 47, 4422 (1993).

    Article  ADS  Google Scholar 

  15. J. T. Mendonça, G. Brodin, and M. Marklund, Phys. Lett. A, 372, 5621 (2008).

    Article  ADS  MATH  Google Scholar 

  16. J. T. Mendonça, G. Brodin, and M. Marklund, Phys. Lett. A, 375, 2665 (2011).

    Article  ADS  Google Scholar 

  17. C. K. Law, T. W. Chen, and P. T. Leung, Phys. Rev. A, 61, 023808 (2000).

    Article  ADS  Google Scholar 

  18. A. Lambrecht, M.-T. Jackel, and S. Reynaud, Phys. Rev. Lett., 77, 615 (1996).

    Article  ADS  Google Scholar 

  19. V. V. Dodonov and A. B. Klimov, Phys. Rev. A, 53, 2664 (1996).

    Article  ADS  Google Scholar 

  20. A. Guerreiro, A. Ferreira, and J. T. Mendonça, Phys. Rev. A, 83, 052302 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Mendonça.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonça, J.T. Time refraction and the perturbed quantum vacuum. J Russ Laser Res 32, 445–453 (2011). https://doi.org/10.1007/s10946-011-9234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-011-9234-y

Keywords

Navigation