Skip to main content
Log in

Quantum entanglement and squeezing in coupled harmonic and anharmonic oscillator systems

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the fundamental connection between quadrature squeezing and continuous variable entanglement within a general class of two-coupled oscillator systems. We determine the quantitative relationship between them through the squeezing parameter and the entanglement entropy of the lowest energy eigenstate of the coupled oscillator systems numerically. Unlike the relation between entanglement and uncertainty product, we found that this relationship is, by no means, the same for the whole class of coupled oscillator systems: to a large extent it depends on the order and strength of the anharmonic potential, which implies that knowledge of the anharmonic potential of the coupled oscillator system is required before one can characterize the degree of entanglement through the squeezing parameter. Our results reveal that a more effective approach to enhance squeezing is to adjust the anharmonicity of the system potential, instead of increasing the quantum correlations between the oscillators. In addition, by probing into a quantum catastrophe model, we uncover transitions in the entanglement entropy and squeezing relation as the potential changes from a single well to a triple well, and then a double-well structure. The transitions appear through distinct entropy–squeezing relation, with a multi-well structure displaying a larger change in the antisqueezing behavior of the position quadrature than the single-well structure, for the same change in the entanglement entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.-W. Hou, M.-F. Wan and Z.-Q. Ma, Eur. Phys. J. D, 62, 279 (2011).

    Article  ADS  Google Scholar 

  2. M. Lombardi and A. Matzkin, Phys. Rev. E, 83, 016207 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Lombardi and A. Matzkin, Laser Phys., 20, 1215 (2010).

    Article  ADS  Google Scholar 

  4. N. N. Chung and L. Y. Chew, Phys. Rev. E, 80, 016204 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Chaudhury, A. Smith, B. E. Anderson, et al., Nature, 461, 768 (2009).

    Article  ADS  Google Scholar 

  6. M. S. Santhanam, V. B. Sheorey and A. Lakshminarayan, Phys. Rev. E, 77, 026213 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Ulam-Orgikh and M. Kitagawa, Phys. Rev. A, 64, 052106 (2001).

    Article  ADS  Google Scholar 

  8. A. Sørensen, L. M. Duan, J. I. Cirac, and P. Zoller, Nature, 409, 63 (2001).

    Article  ADS  Google Scholar 

  9. N. Bigelow, Nature, 409, 27 (2001).

    Article  ADS  Google Scholar 

  10. S. Furuichi and A. A. Mahmoud, J. Phys. A: Math. Gen., 34, 6851 (2001).

    Article  ADS  MATH  Google Scholar 

  11. X.-W. Hou, M.-F. Wan, and Z.-Q. Ma, Phys. Rev. A, 79, 022308 (2009).

    Article  ADS  Google Scholar 

  12. M. M. Wolf, J. Eisert, and M. B. Plenio, Phys. Rev. Lett., 90, 047904 (2003).

    Article  ADS  Google Scholar 

  13. F. Galve, L. A. Pachón, and D. Zueco, Phys. Rev. Lett., 105, 180501 (2010).

    Article  ADS  Google Scholar 

  14. N. N. Chung, C. H. Er, Y. S. Teo, and L. Y. Chew, Phys. Rev. A, 82, 014101 (2010).

    Article  ADS  Google Scholar 

  15. S. Ikeda and F. Fillaux, Phys. Rev. B, 59, 4134 (1999).

    Article  ADS  Google Scholar 

  16. F. Fillaux, Chem. Phys. Lett., 408, 302 (2005).

    Article  ADS  Google Scholar 

  17. K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Phys. Rev. A, 66, 042327 (2002).

    Article  ADS  Google Scholar 

  18. L. Martina and G. Soliani, arXiv quant-ph 07043130V1 (2007).

  19. R. M. McDermott and I. H. Redmount, arXiv quant-ph 0403184V2 (2004).

  20. D. Han, Y, S. Kim, and Marilyn E. Noz, Am. J. Phys., 67, 61 (1998).

    Article  ADS  Google Scholar 

  21. H.-G. Duan and X.-T. Liang, Phys. Rev. A, 83, 032316 (2011).

    Article  ADS  Google Scholar 

  22. M. Tomiya, N. Yoshinaga, S. Sakamoto, and A Hirai, Com. Phys. Comm., 169, 313 (2005).

    Article  ADS  Google Scholar 

  23. C. S. Hsue and J. L. Chern, Phys. Rev. D, 29, 643 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  24. N. N. Chung and L. Y. Chew, Phys. Rev. A, 76, 032113 (2007).

    Article  ADS  Google Scholar 

  25. N. N. Chung and L. Y. Chew, Phys. Rev. A, 80, 012103 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  26. C. Emary, N. Lambert, and T. Brandes, Phys. Rev. A, 71, 062302 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  27. T. F. Viscondi and K. Furuya, J. Phys. A: Math. Theor., 44, 175301 (2011).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lock Yue Chew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chew, L.Y., Chung, N.N. Quantum entanglement and squeezing in coupled harmonic and anharmonic oscillator systems. J Russ Laser Res 32, 331–337 (2011). https://doi.org/10.1007/s10946-011-9221-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-011-9221-3

Keywords

Navigation