Skip to main content
Log in

Improvement of diode-end-pumped 912 nm Nd:GdVO4 laser performance based on microchannel heat sink

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

To solve the thermal dissipation problem in diode-end-pumped solid state lasers and improve the performance of 912 nm Nd:GdVO4 lasers, a novel microchannel heat sink is designed and used in the experiments. Heat-transfer coefficients for the common heat sink and microchannel heat sink are calculated. The results obtained for the heat-transfer coefficient for the heat sink with a channel width of 0.2 mm is almost 5 times higher than that of the common one. The heat resistance for the novel heat sink is analyzed. Simulation results show that the maximum temperature in the laser crystal is reduced by 19°C at an absorbed pump power of 24.0 W, and the heat transfer ability significantly increases if the microchannel heat sink is used. Experimental results also indicate that the performance for a 912 nm laser is improved significantly using the novel heat sink, especially from the aspects of laser-beam quality and power scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Y. Fan and R. L. Byer, IEEE J. Quantum Electron., QE-23, 605 (1987).

    ADS  Google Scholar 

  2. F. Hanson, Opt. Lett., 20, 148 (1995).

    Article  ADS  Google Scholar 

  3. P. Zeller and P. Peuser, Opt. Lett., 25, 34 (2000).

    Article  ADS  Google Scholar 

  4. B. M.Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron., QE-37, 1203 (2001).

    Article  ADS  Google Scholar 

  5. T. J. Axenson, N. P. Barnes, D. J. Reichle, and E. E. Koehler, J. Opt. Soc. Am. B, 19, 1535 (2002).

    Article  ADS  Google Scholar 

  6. S. Bjurshagen and R. Koch, Appl. Opt., 43 4753 (2004).

    Article  ADS  Google Scholar 

  7. S. Bjurshagen, R. Koch, and F. Laurell, Opt. Commun., 261, 109 (2006).

    Article  ADS  Google Scholar 

  8. R. Zhou, T. L. Zhang, E. B. Li, et al., Opt. Express, 13, 10115 (2005).

    Article  ADS  Google Scholar 

  9. R. Zhou, E. B. Li, H. F. Li, et al., Opt. Lett., 31, 1869 (2006).

    Article  ADS  Google Scholar 

  10. F. Jia, Q. Xue, Q. Zheng, et al., Appl. Phys. B, 83, 245 (2006).

    Article  ADS  Google Scholar 

  11. N. Pavel, V. Lupei, J. Saikawa, et al., Appl. Phys. B, 82, 599 (2006).

    Article  ADS  Google Scholar 

  12. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, Appl. Phys. B, 86, 65 (2007).

    Article  ADS  Google Scholar 

  13. D. Krennrich, R. Knappe, B. Henrich, et al., Appl. Phys. B, 92, 165 (2008).

    Article  ADS  Google Scholar 

  14. M. Eichhorn, Appl. Phys. B, 93, 269 (2008).

    Article  ADS  Google Scholar 

  15. S. Wang, X. Wang, F. Kallmeyer, et al., Appl. Phys. B, 92, 43 (2008).

    Article  ADS  Google Scholar 

  16. M. Castaing, F. Balembois, P. Georges, et al., Opt. Lett., 33, 1234 (2008).

    Article  ADS  Google Scholar 

  17. C. Czeranowsky, M. Schmidt, E. Heumann, et al., Opt. Commun., 205, 361 (2002).

    ADS  Google Scholar 

  18. C. W. Xu, Z. Y. Wei, K. N. He, et al., Opt. Commun., 281, 4398 (2008).

    Article  ADS  Google Scholar 

  19. H. D. Jiang, H. J. Zhang, J. Y. Wang, et al., Opt. Commun., 198, 447 (2001).

    Article  ADS  Google Scholar 

  20. Y. Chen, H. Peng, W. Hou, et al., Appl. Phys. B, 83, 241 (2006).

    Article  ADS  Google Scholar 

  21. F. Hanson, Appl. Phys. Lett., 66, 3549 (1995).

    Article  ADS  Google Scholar 

  22. V. Lupei and N. Pavel, Appl. Phys. Lett., 81, 2677 (2002).

    Article  ADS  Google Scholar 

  23. N. Pavel, C. Kränkel, R. Peters, et al., Appl. Phys. B, 91, 415 (2008).

    Article  ADS  Google Scholar 

  24. G. Hetsroni, A. Mosvak, E. Pogrebnvak, and L.P. Yarin, Int. J. Heat Mass Transf., 48, 5580 (2005).

    Article  Google Scholar 

  25. K. C. Toh, X. Y. Chen, and J. C. Chai, Int. J. Heat Mass Transf., 45, 5133 (2002).

    Article  MATH  Google Scholar 

  26. V. Gnielinski, Int. Chem. Eng., 16, 359 (1976).

    Google Scholar 

  27. H. S. Kou, J. J. Lee, and C. W. Chen, Int. Commun. Heat Mass Transf., 35, 577 (2008).

    Article  Google Scholar 

  28. Y. Sato and T. Taira, Opt. Express, 14, 10528 (2006).

    Article  ADS  Google Scholar 

  29. Y. Sato and T. Taira, OSA Trends in Optics and Photonics (TOPS), Conference on Lasers and Electro-Optics, OSA Technical Digests, Opt. Soc. Amer., Washington D.C. (2007), Paper JWA87.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Chen, F., Yan, R. et al. Improvement of diode-end-pumped 912 nm Nd:GdVO4 laser performance based on microchannel heat sink. J Russ Laser Res 30, 327–337 (2009). https://doi.org/10.1007/s10946-009-9086-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-009-9086-x

Keywords

Navigation