Skip to main content
Log in

Transmission and reflection of the evanescent waves from a nanometric exit hole in a cylindrical waveguide

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The results of theoretical considerations of the electromagnetic-field behavior in a truncated cylindrical waveguide with a subwavelength-sized exit hole are reported. We develop a self-consistent approach to the description of the transverse-magnetic (TM) and transverse-electric (TE) fields inside the waveguide and in the free space behind the exit aperture of the waveguide. The approach takes into account the transformation of the initial wave into all possible modes that appear upon reflection from the exit aperture of the waveguide. It allows us to evaluate the amplitude reflection coefficients for the evanescent TM and TE waves and express them in terms of the impedance of an infinite waveguide and the impedance of the exit aperture at the interface of the truncated waveguide and the free space. We determine the complex optical flow through a nanometric hole and the transmission coefficient to the far-field zone and express them through the reflection coefficient. It is shown that the reflection and transmission coefficients strongly depend on the ratio of the aperture radius to the light wavelength, the dielectric constants of the waveguide core and the surrounding matter, and the type of waveguide modes. It is demonstrated that, in the case of a metallic matter at the waveguide exit, there is a strong enhancement in the amplitude of the reflected wave and, hence, in the resulting amplitude of the tangential component of the electric field. This enhancement is a result of the plasmon-supported effects in a metallic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, et al., IEEE J. Sel. Top. Quantum Electron., 8 839, (2002).

    Article  Google Scholar 

  2. D. W. Pohl, Phil. Trans. Roy. Soc. London, 362, 701 (2004).

    Article  ADS  Google Scholar 

  3. B. Hecht, B. Sick, U. P. Wild, et al., J. Chem. Phys., 112, 7761 (2000).

    Article  ADS  Google Scholar 

  4. T. Dziomba, H. U. Danzebrink, C. Lehrer, et al., J. Microscop., 202, 22 (2001).

    Article  MathSciNet  Google Scholar 

  5. A. Naber, D. Molenda, U. C. Fischer, et al., Phys. Rev. Lett., 89, 21801 (2002).

    Article  Google Scholar 

  6. T. Thio, K. M. Pellerin, R. A. Linke, et al., Opt. Lett., 26, 1972 (2001).

    Article  ADS  Google Scholar 

  7. H. J. Lezec, A. Degiron, E. Devaux, et al., Science, 297, 820 (2002).

    Article  ADS  Google Scholar 

  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al., Nature (London), 391, 667 (1998).

    Article  ADS  Google Scholar 

  9. C. Sonnichsen, A. C. Duch, G. Steinninger, et al., Appl. Phys. Lett., 76, 140 (2000).

    Article  ADS  Google Scholar 

  10. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, et al., Opt. Commun., 200, 1 (2001).

    Article  ADS  Google Scholar 

  11. N. Bonod, S. Enoch, L. Li, et al., Opt. Express, 11, 482 (2003).

    Article  ADS  Google Scholar 

  12. L. Novotny, D. W. Pohl, and P. Regli, J. Opt. Soc. Am. A, 11, 1768 (1994).

    ADS  Google Scholar 

  13. L. Novotny, D. W. Pohl, and B. Hecht, Opt. Lett., 20, 970 (1995).

    Article  ADS  Google Scholar 

  14. L. Novotny, D. W. Pohl, and B. Hecht, Ultramicroscopy, 61, 1 (1995).

    Article  Google Scholar 

  15. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, J. Microsc., 210, 220 (2003).

    Article  MathSciNet  Google Scholar 

  16. L. Novotny and C. Hafner, Phys. Rev. E, 50, 4094 (1994).

    Article  ADS  Google Scholar 

  17. R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York (1966).

    Google Scholar 

  18. A. Castiaux, C. Girard, A. Dereux, et al., Phys. Rev. E, 54, 5752 (1996).

    Article  ADS  Google Scholar 

  19. A. Castiaux, H. U. Danzebrink, and X. Bouju, J. Appl. Phys., 84, 52 (1998).

    Article  ADS  Google Scholar 

  20. C. Girard, C. Joachim, and S. Gauthier, Rep. Prog. Phys., 63, 893 (2000).

    Article  ADS  Google Scholar 

  21. T. I. Kuznetsova and V. S. Lebedev, Kvantov. Élektron., 33, 931 (2003) [Quantum Electron., 33, 931 (2003)].

    Article  Google Scholar 

  22. T. I. Kuznetsova and V. S. Lebedev, J. Russ. Laser Res., 24, 458 (2003).

    Article  Google Scholar 

  23. T. I. Kuznetsova, V. S. Lebedev, and A. M. Tsvelik, J. Opt. A: Pure Appl. Opt., 6, 338 (2004).

    Article  ADS  Google Scholar 

  24. T. I. Kuznetsova and V. S. Lebedev, Pis’ma Zh. Éksp. Teor. Fiz., 79, 70 (2004) [J. Exp. Theor. Phys. Lett., 79, 62 (2004)].

    Google Scholar 

  25. T. I. Kuznetsova and V. S. Lebedev, Kvantov. Élektron., 34, 361 (2004) [Quantum Electron., 34, 361 (2004)].

    Article  Google Scholar 

  26. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. B, 70, 035107 (2004).

    Google Scholar 

  27. V. S. Lebedev, T. I. Kuznetsova, and A. G. Vitukhnovsky, Dokl. Akad. Nauk, 410, 749 (2006) [Dokl. Phys., 51, 542 (2006)].

    MATH  Google Scholar 

  28. T. I. Kuznetsova and V. S. Lebedev, J. Russ. Laser Res., 27, 92 (2006).

    Article  Google Scholar 

  29. H. Furukawa and S. Kawata, Opt. Commun., 132, 170 (1996).

    Article  ADS  Google Scholar 

  30. H. Nakamura, T. Sato, H. Kambe, et al., J. Microsc., 202, 50 (2001).

    Article  MathSciNet  Google Scholar 

  31. S. Mitsugi, Y. J. Kim, and K. Goto, Opt. Rev., 8, 120 (2001).

    Article  Google Scholar 

  32. H. A. Bethe, Phys. Rev., 66, 163 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. C. J. Bouwkamp, Philips. Res. Rep., 5, 321 (1950).

    MathSciNet  Google Scholar 

  34. C. J. Bouwkamp, Rep. Prog. Phys., 17, 35 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Rayleigh, Philos. Mag., 44, 28 (1897).

    Google Scholar 

  36. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed., Pergamon, Oxford (1993).

    Google Scholar 

  37. A. Roberts, J. Appl. Phys., 70, 4045 (1991).

    Article  ADS  Google Scholar 

  38. A. Drezet, J. C. Woehl, and S. Huant, Phys. Rev. E, 65, 046611 (2002).

    Google Scholar 

  39. F. J. García de Abajo, Opt. Express, 10, 1475 (2002).

    ADS  Google Scholar 

  40. L. Alvarez, A. Sauceda, and M. Xiao, Opt. Commun., 219, 9 (2003).

    Article  ADS  Google Scholar 

  41. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London), 424, 824 (2003).

    Article  ADS  Google Scholar 

  42. F. J. Garcia-Vidal and L. Martin-Moreno, Phys. Rev. B, 66, 155412 (2002).

    Article  ADS  Google Scholar 

  43. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, et al., Phys. Rev. Lett., 90, 167401 (2003).

    Article  ADS  Google Scholar 

  44. H. F. Ghaemi, T. Thio, D. E. Grupp, et al., Phys. Rev. B, 58, 6779 (1998).

    Article  ADS  Google Scholar 

  45. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, et al., Phys. Rev. Lett., 86, 1114 (2001).

    Article  ADS  Google Scholar 

  46. R. Wannemacher, Opt. Commun., 195, 107 (2001).

    Article  ADS  Google Scholar 

  47. A. K. Sarychev, V. A. Podolsky, A. M. Dykhne, and V. M. Shalaev, IEEE J. Quantum Electron., 38, 956 (2002).

    Article  ADS  Google Scholar 

  48. T. I. Kuznetsova and V. S. Lebedev, Kvantov. Élektron., 32, 727 (2002) [Quantum Electron., 32, 727 (2002)].

    Article  Google Scholar 

  49. L. A. Vaynshteyn, Electromagnetic Waves [in Russian], Radio i Svyaz, Moscow (1988).

    Google Scholar 

  50. L. A. Vaynshteyn, Diffraction of Electromagnetic and Acoustic Waves at the Open End of a Waveguide [in Russian], Sovetskoe Radio, Moscow (1953).

    Google Scholar 

  51. R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York (1961).

    Google Scholar 

  52. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).

    MATH  Google Scholar 

  53. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York (1965).

    Google Scholar 

  54. E. D. Palik (ed.), Handbook of Optical Constants of Solids, Academic Press, San Diego (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana I. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, T.I., Lebedev, V.S. Transmission and reflection of the evanescent waves from a nanometric exit hole in a cylindrical waveguide. J Russ Laser Res 29, 1–34 (2008). https://doi.org/10.1007/s10946-008-0001-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-008-0001-7

Keywords

Navigation