Skip to main content
Log in

Laser spectroscopy of nanocrystals of aluminum and silicon oxides

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The specific features of the spectra of secondary radiation (photoluminescence and Raman scattering) in nanocrystalline samples of aluminum oxide and fused silica are reported. The photoluminescence (PL) spectrum of nanocrystalline aluminum oxide was found to be strongly modified with the wavelength of exciting radiation. Spectra of secondary radiation were excited using a xenon lamp, a pulsed nitrogen laser (with a wavelength of 337.1 nm), a pulse-periodic copper vapor laser (510.6, 578.2 or 255.3 nm), and a solid-state continuous wave laser (532 nm). The numerical calculation of the photoluminescence spectrum of nanocrystalline aluminum oxide doped with chromium under various excitation conditions was performed. The results were compared with the experimental curves. The photoluminescence decay kinetics of nanocrystalline Al2O3 was measured. Modification of the photoluminescence spectra of nanocrystalline Al2O3 was found under the action of ultraviolet and radioactive radiation. The presence of near-ultraviolet bands was found in the photoluminescence spectra of fused silica of the QV type. The form of Raman and photoluminescence spectra of fused silica was shown to be dependent on its microstructure and impurities. Infrared reflectivity spectra of materials of di_erent structures based on SiO2 were obtained. It was shown that the Raman spectra of nanocrystalline samples of aluminum and silicon oxides differed essentially from those of the bulk samples. A characteristic boson peak was revealed in the nanomaterials with the position and width related to the nanoparticles’ sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Glinka, S.-H. Lin, and Y.-T. Chen, Phys. Rev. B, 62, 4733 (2000).

    Article  ADS  Google Scholar 

  2. M. Watanabe, S. Juodkazis, H.-B. Sun, et al., Appl. Phys. Lett., 77, 13 (2000).

    Article  ADS  Google Scholar 

  3. M. Watanabe, S. Juodkazis, H.-B. Sun, et al., Appl. Phys. Lett., 74, 3957 (1999).

    Article  ADS  Google Scholar 

  4. A. I. Ekimov and A. A. Onushchenko, Fiz. Tekh. Poluprovod., 16, 1215 (1982).

    Google Scholar 

  5. Al. L. Efros and A. L. Efros, Fiz. Tekh. Poluprovod., 16, 1209 (1982).

    Google Scholar 

  6. L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys. Rev. B, 38, 8142 (1988).

    Article  ADS  Google Scholar 

  7. A. A. Bugaev and A. L. Stankevich, Fiz. Tverd. Tela, 34, 1613 (1992).

    Google Scholar 

  8. O. A. Aktsipetrov, L. V. Elyutin, A. A. Nikulin, and E. A. Ostrovskaya, Zh. Éxp. Teor. Fiz., 107, 96 (1995).

    Google Scholar 

  9. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, 909 (1997).

    Article  ADS  Google Scholar 

  10. L. T. Canham, Appl. Phys. Lett., 57, 1046 (1990).

    Article  ADS  Google Scholar 

  11. D. N. Goryachev and O. M. Sreseli, Fiz. Tekh. Poluprovod., 31, 1383 (1997).

    Google Scholar 

  12. T. N. Vasilevskaya and R. I. Zakharchenya, Fiz. Tverd. Tela, 38, 3129 (1996).

    Google Scholar 

  13. S. B. Gaponenko, Fiz. Tekh. Poluprovod., 30, 577 (1996).

    Google Scholar 

  14. Y. Yang, Y.-F. Chen, Y.-Y. Lee, and L.-C. Liu, J. Appl. Phys., 76, 3041 (1994).

    Article  ADS  Google Scholar 

  15. I. Suemune, N. Noguchi, and M. Yammanishi, Jpn J. Appl. Phys., 31, Pt. 2, L494 (1992).

    Article  ADS  Google Scholar 

  16. E. M. Kompan, I. Yu. Shabanov, V. I. Beklemyshin, et al., Fiz. Tekh. Poluprovod., 30, 1095 (1996).

    Google Scholar 

  17. A. N. Obraztsov, V. A. Karavanskii, H. Okushi, and H. Watanabe, Fiz. Tekh. Poluprovod., 32, 1001 (1998).

    Google Scholar 

  18. K. N. El’tsov, V. A. Karavanskii, and V. V. Martynov, Pis’ma Zh. Éxp. Teor. Fiz., 63, 106 (1996).

    ADS  Google Scholar 

  19. M. A. Tishler, R. T. Collins, J. H. Stathis, and J. C. Tsang, Appl. Phys. Lett., 60, 639 (1992).

    Article  ADS  Google Scholar 

  20. Sh. A. Vakhidov, E. M. Gasanov, M. I. Samoilovich, and U. Yarkulov, Radiation Effects in Quartz [in Russian], Fan, Tashkent (1975).

    Google Scholar 

  21. I. Náray-Szabó, Inorganic Crystal Chemistry, Akadémiai Kiadó, Budapest (1969).

    Google Scholar 

  22. G. S. Smith and L. E. Alexander, Acta Crystallogr., 16, 462 (1963).

    Article  Google Scholar 

  23. V. P. Pryanishnikov, Silica Systems [in Russian], Stroiizdat, Leningrad (1971).

    Google Scholar 

  24. R. G. Gossink, “The Preparation of Ultrapure Glass for Optical Wave Guides,” in: Survey Papers on 11th International Congress on Glass, CVTS-Dum Techn., Prague (1977), Vol. 2, p. 112.

    Google Scholar 

  25. J. R. Anderson, Structure of Metallic Catalysts, Academic Press, London & New York (1975).

    Google Scholar 

  26. A. G. Revesz, IEEE Trans. Nucl. Sci., 24, 2102 (1977).

    ADS  Google Scholar 

  27. C. T. Sah, IEEE Trans. Nucl. Sci., 23, 1563 (1976).

    ADS  Google Scholar 

  28. R. A. B. Devine, Jpn J. Appl. Phys., 31, 4411 (1992).

    Article  ADS  Google Scholar 

  29. R. A. B. Devine, IEEE Trans. Nucl. Sci., 41, 452 (1994).

    Article  ADS  Google Scholar 

  30. V. A. Gritsenko, Atomic and Electronic Structure of Amorphous Dielectrics in Silicon MIS Structures [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  31. V. S. Vavilov, V. F. Kiselev, and B. N. Mukashev, Defects in Silicon and at Its Surface [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  32. W. L. Warren, M. N. Shaneyfelt, D. M. Fleetwood, et al., IEEE Trans. Nucl. Sci., 41, 1817 (1994).

    Article  ADS  Google Scholar 

  33. C. W. Gwyn, J. Appl. Phys., 40, 4886 (1969).

    Article  ADS  Google Scholar 

  34. A. P. Baraban, V. V. Bulavinov, and P. P. Konorov, Electronics of SiO 2 Layers on Silicon [in Russian], Leningrad State University, Russia (1988).

    Google Scholar 

  35. C. R. Helms and E. H. Poindexter, Rep. Prog. Phys., 57, 791 (1994).

    Article  ADS  Google Scholar 

  36. K. Vanheusden, W. L. Warren, R. A. B. Devine, et al., J. Non-Cryst. Sol., 254, 1 (1999).

    Article  ADS  Google Scholar 

  37. F. B. McLean, IEEE Trans. Nucl. Sci., 27, 1651 (1980).

    Article  ADS  Google Scholar 

  38. G. V. Gadiyak, Fiz. Tekh. Poluprovod., 31, 257 (1997).

    Google Scholar 

  39. J. R. Schwank, D. M. Fleetwood, P. S. Winokur, et al., IEEE Trans. Nucl. Sci., 34, 1152 (1987).

    ADS  Google Scholar 

  40. J. F. Conley and P. M. Lenahan, IEEE Trans. Nucl. Sci., 40, 1335 (1993).

    Article  ADS  Google Scholar 

  41. E. A. Kotomin and A. I. Popov, Nucl. Instrum. Methods B, 141, 1 (1998).

    Article  ADS  Google Scholar 

  42. C. Kittel, Introduction to Solid State Physics, Wiley, New York (1966).

    Google Scholar 

  43. R. K. Swank and F. C. Brown, Phys. Rev., 130, 34 (1963).

    Article  ADS  Google Scholar 

  44. V. S. Kortov, A. I. Syurdo, and F. F. Sharafutdinov, Zh. Tekh. Fiz., 67, 72 (1997).

    Google Scholar 

  45. A. Stashans, E. A. Kotomin, and J.-L. Calais, Phys. Rev. B, 49, 14854 (1994).

    Google Scholar 

  46. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition Metals in Crystals, Academic Press, New York (1970).

    Google Scholar 

  47. I. B. Bersuker, Electronic Structure and Properties of Coordination Compounds [in Russian], Khimia, Leningrad (1976).

    Google Scholar 

  48. I. B. Bersukerv and V. Z. Paulinger, Vibronic Interactions in Molecules and Crystals [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  49. S. V. Grum-Grzhimailo, L. B. Pasternak, and R. K. Sviridova, “Narrow absorption bands in spectra of the crystals containing chromium,” in: S. V. Grum-Grzhimailo and P. P. Feofilov (eds.), Crystal Spectroscopy [in Russian], Nauka, Moscow (1966), p. 195.

    Google Scholar 

  50. B. Struve and G. Huber, Appl. Phys. B, 36, 195 (1985).

    Article  ADS  Google Scholar 

  51. V. M. Fain and Ya. I. Khanin, Quantum Electronics, MIT Press, Cambridge, Mass. (1968), Vols. 1 & 2.

    Google Scholar 

  52. M. M. Zaripov and Yu. Ya. Shamonin, Zh. Éxp. Teor. Fiz., 30, 291 (1956).

    Google Scholar 

  53. W. Low, J. Chem. Phys., 33, 1162 (1960).

    Article  ADS  Google Scholar 

  54. A. D. Liehr and C. J. Ballhausen, Phys. Rev., 106, 1161 (1957).

    Article  ADS  Google Scholar 

  55. Yu. E. Perlin, Fiz. Tverd. Tela, 10, 1941 (1968).

    Google Scholar 

  56. A. V. Shavlov, “Spectrum fine structure and specific features of the luminescence of chromium ions in aluminum oxide and magnesium oxide,” in: M. E. Zhabotinskii and T. A. Shmaonov (eds.), Lasers [in Russian], IL, Moscow (1963).

    Google Scholar 

  57. A. A. Kaplyanskii, M. B. Mel’nikov, and S. P. Feofilov, Fiz. Tverd. Tela, 38, 1434 (1996).

    Google Scholar 

  58. I. Ya. Gerlovin and N. A. Tolstoy, “Transition probabilities from the 4T2 state in ruby, ” in: A. A. Kaminskii, Z. L. Morgenshtern, and D. T. Sviridov (eds.), Spectroscopy of Crystals [in Russian], Nauka, Moscow (1975), p. 353.

    Google Scholar 

  59. E. E. Bukke and Z. L. Morgenshtern, Opt. Spektrosk., 14, 687 (1963).

    Google Scholar 

  60. J. P. Wittke, J. Appl. Phys., 33, 2333 (1962).

    Article  ADS  Google Scholar 

  61. B. S. Tsukerblat and Yu. E. Perlin, Opt. Spektrosk., 21, 13 (1966).

    ADS  Google Scholar 

  62. Yu. E. Perlin and B. S. Tsukerblat, Izv. AN SSSR, Ser. Fiz., 31, 2007 (1967).

    Google Scholar 

  63. Yu. E. Perlin, B. S. Tsukerblat, and Yu. B. Rosenfel’d, “On the luminescence quantum yield of ruby on the R-line,” in: S. V. Grum-Grzhimailo, B. S. Skorobogatov, P. P. Feofilov, and V. I. Cherepanov (eds.), Spectroscopy of Crystals [in Russian], Nauka, Moscow (1970), p. 90.

    Google Scholar 

  64. E. G. Valyashko, S. V. Grum-Grzhimailo, I. M. Kutovoi, et al., “Spectra of crystals containing manganese ions,” in: S. V. Grum-Grzhimailo, B. S. Skorobogatov, P. P. Feofilov, and V. I. Cherepanov (eds.), Spectroscopy of Crystals [in Russian], Nauka, Moscow (1970), p. 211.

    Google Scholar 

  65. S. Geschwind, P. Kisluk, P. Klein, et al., Phys. Rev., 126, 1684 (1962).

    Article  ADS  Google Scholar 

  66. K. K. Rebane, “Theory of the vibrational structure of the spectra of impurity crystals,” in: S. V. Grum-Grzhimailo and P. P. Feofilov (eds.), Spectroscopy of Crystals [in Russian], Nauka, Moscow (1966), p. 21.

    Google Scholar 

  67. P. V. Demenkov, O. A. Plaksin, V. A. Stepanov, et al., Pis’ma Zh. Tekh. Fiz., 26, 57 (2000).

    Google Scholar 

  68. A. I. Syurdo, V. S. Kortov, V. A. Pustovarov, F. F. Sharafutdinov, and E. I. Zinin, Nucl. Instrum. Methods A, 405, 408 (1998).

    Article  ADS  Google Scholar 

  69. C. Chen, H. Pan, D. Zhu, et al., Nucl. Instrum. Methods B, 159, 81 (1999).

    Article  ADS  Google Scholar 

  70. G. Erfurt, M. R. Krbetschek, T. Trautmann, and W. Stolz, Radiation Measurements, 32, 735 (2000).

    Article  Google Scholar 

  71. G. Hütt, I. Jaek, L. Brodski, and V. Vasilchenko, Appl. Rad. Isot., 50, 969 (1999).

    Article  Google Scholar 

  72. N. R. Pooltonn, G. M. Smith, P. C. Riedi, et al., J. Phys. D: Appl. Phys., 33, 1007 (2000).

    Article  ADS  Google Scholar 

  73. V. I. Baryshnikov, T. A. Kolesnikova, and S. V. Dorokhov, Fiz. Tverd. Tela, 39, 286 (1997).

    Google Scholar 

  74. L. Botter-Jensen, L. N. Agersnap, B. G. Markey, and S. W. S. McKeever, Radiation Measurements, 27, 295 (1997).

    Article  Google Scholar 

  75. V. D. Andreev, T. A. Nachal’naya, and E. V. Garbusenok, Sverkhtverd. Mater., No. 2, 11 (1993).

  76. V. S. Gorelik, S. N. Mikov, and A. V. Igo, Kratk. Soobshch. Fiz. (Bulletin of the Lebedev Phys. Inst.), No. 11–12, 20 (1995).

  77. N. N. Andreichuk, S. V. Vasin, A. N. Zabolotnov, et al., Uchen. Zapiski Ul’yannovsk. Gos. Univer. Ser. Fiz., No. 1(6), 68 (1999).

  78. H. Shinaga, Sensor Technol., No. 6, 3 (1993).

  79. V. R. Sokolovskii, A Means of Obtaining Composite Powder, Pat. No. 1650245, MKI B 01 J 13/02, February 23, 1993.

  80. J. H. De Boer, B. G. Linsen, Th. Van der Plas, and G. J. Zondervan, J. Catal., 4, 649 (1965).

    Article  Google Scholar 

  81. N. G. Ryabtsev, Materials of Quantum Electronics [in Russian], Sovetskoe Radio, Moscow (1972).

    Google Scholar 

  82. A. A. Kaplyanskii, S. P. Feofilov, and R. I. Zakharchenya, Opt. Spektrosk., 79, 709 (1995).

    Google Scholar 

  83. B. Barnett and R. Englman, J. Lumin., 3, 55 (1970).

    Article  Google Scholar 

  84. C. W. Struck and W. H. Fonger, J. Lumin., 10, 1 (1975).

    Article  Google Scholar 

  85. R. Englman and B. Barnett, J. Lumin., 3, 37 (1970).

    Article  Google Scholar 

  86. M. Yamaga, B. Henderson, and K. P. O’Donnel, Phys. Rev. B, 46, 3273 (1992).

    Article  ADS  Google Scholar 

  87. R. H. Bartram and A. M. Stoneham, Solid State Commun., 17, 1593 (1975).

    Article  ADS  Google Scholar 

  88. M. Yamaga, B. Henderson, and K. P. O’Donnel, J. Lumin., 46, 397 (1990).

    Article  Google Scholar 

  89. N. N. Kristofel’, Theory of Impurity Centers of Small Radii in Ionic Crystals [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  90. A. F. Verlan’ and V. S. Sizikov, Methods of Solution of Integral Equations Using Computer Programs [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  91. C. Mo, Z. Yuan, L. Zhang, and C. Xie, Nanostruct. Mater., 2, 47 (1993).

    Article  Google Scholar 

  92. A. Anderson (ed.), The Raman Effect. Applications, Marcel Dekker, Inc., New York (1973), Vol. 2.

    Google Scholar 

  93. D. M. Adams, Spectrosc. Prop. Inorg. and Organometal. Compounds, 12, 205 (1980).

    Google Scholar 

  94. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media. Handbook [in Russian], Khimia, Leningrad (1984).

    Google Scholar 

  95. S. N. Mikov, A. V. Igo, and V. S. Gorelik, Kratk. Soobshch. Fiz. (Bulletin of the Lebedev Phys. Inst.), No. 7–8, 15 (1994).

  96. B. Evans, J. Lumin., 60–61, 620 (1994).

    Article  Google Scholar 

  97. V. A. Skuratov, Nucl. Instrum. Methods B, 146, 385 (1998).

    Article  ADS  Google Scholar 

  98. M. Springis, P. Kulis, A. Veispals, and I. Tale, Radiation Measurements, 24, 453 (1995).

    Article  Google Scholar 

  99. M. S. Akselrod, A. C. Lucas, J. C. Polf, and S. W. S. McKeever, Radiation Measurements, 29, 391 (1998).

    Article  Google Scholar 

  100. V. I. Flerov, A. V. Flerov, and S. I. Flerov, Radiation Measurements, 26, 253 (1996).

    Article  Google Scholar 

  101. Y. Aoki, N. T. My, S. Yamamoto, and N. Hiroshi, Nucl. Instrum. Methods B, 114, 276 (1996).

    Article  ADS  Google Scholar 

  102. P. Pokorny and A. Ibara, J. Phys.: Condens. Matter, 5, 7387 (1993).

    Article  ADS  Google Scholar 

  103. K. H. Lee and J. H. Crawford, Jr., Phys. Rev. B, 19, 3217 (1979).

    Article  ADS  Google Scholar 

  104. G. P. Summers, Rad. Protect. Dosim., 8, 69 (1984).

    MathSciNet  Google Scholar 

  105. S. W. S. McKeever, M. S. Akselrod, and B. G. Markey, Rad. Protect. Dosim., 65, 267 (1996).

    Google Scholar 

  106. A. Pasquarello and R. Car, Phys. Rev. Lett., 80, 5145 (1998).

    Article  ADS  Google Scholar 

  107. T. Uchino, Y. Tokuda, and T. Yoko, Phys. Rev. B, 58, 5322 (1998).

    Article  ADS  Google Scholar 

  108. M. Yoshikawa, K. Iwagami, N. Morita, et al., Thin Solid Films, 310, 167 (1997).

    Article  ADS  Google Scholar 

  109. A. P. Silin’ and A. N. Trukhin, Point defects and elementary excitations in crystalline and vitreous SiO 2 [in Russian], Zinatne, Riga (1985).

    Google Scholar 

  110. F. L. Galeener and J. C. Mikkelsen, Phys. Rev. B, 23, 5527 (1981).

    Article  ADS  Google Scholar 

  111. V. K. Malinovskii, V. N. Novikov, N. V. Surovtsev, and A. P. Shebanin, Fiz. Tverd. Tela, 42, 62 (2000).

    Google Scholar 

  112. B. Guillot and Y. Guissani, Phys. Rev. Lett., 78, 2401 (1997).

    Article  ADS  Google Scholar 

  113. A. R. West, Solid State Chemistry and its Applications, Wiley, New York (1984).

    Google Scholar 

  114. L. Skuja and A. R. Silin, Phys. Status Solidi A, 5, K11 (1979).

    Article  Google Scholar 

  115. A. V. Amosov, V. Kh. Khalilov, and V. S. Khotimchenko, Zh. Prikl. Spectrosk., 25, 817 (1976).

    Google Scholar 

  116. C. E. Jones and D. Embree, J. Appl. Phys., 47, 5365 (1976).

    Article  ADS  Google Scholar 

  117. A. R. Silin’, L. N. Skuya, and A. A. Lapenas, “Effect of neutron irradiation on the photoluminescence of vitreous silica,” in: Yu. Zakis (ed.), Physics and Chemistry of Glass Forming Systems [in Russian], LGU, Riga (1980), p. 8.

    Google Scholar 

  118. B. Sanaev, G. I. Ikramov, and S. Kh. Usmanova, Fiz. Khim. Stekla, 3, 376 (1977).

    Google Scholar 

  119. D. J. Huntley, M. A. Short, and K. Dunphy, Can. J. Phys., 74, 81 (1996).

    ADS  Google Scholar 

  120. W. Primak and R. A. Uphaus, J. Chem. Phys., 29, 972 (1958).

    Article  ADS  Google Scholar 

  121. R. Th. Kersten and H. Boroffka, Opt. Commun., 17, 119 (1976).

    Article  ADS  Google Scholar 

  122. P. Kaiser, J. Opt. Soc. Am., 64, 475 (1974).

    Article  ADS  Google Scholar 

  123. A. N. Gur’yanov, D. D. Gusovskii, and E. M. Dianov, Kvantov. Élektron., 6, 1310 (1979).

    Google Scholar 

  124. L. N. Skuja, A. N. Trukhin, and A. E. Plaudis, Phys. Status Solidi A, 84, K153 (1984).

    Article  Google Scholar 

  125. A. R. Silin’ and L. N. Skuya, “Luminescence of intrinsic defects in vitreous silica,” in: Yu. Zakis (ed.), Physics and Chemistry of Glass Forming Systems [in Russian], LGU, Riga (1980), p. 56.

    Google Scholar 

  126. L. N. Skuja and A. R. Silin’, Phys. Status Solidi A, 50, K149 (1978).

    Article  Google Scholar 

  127. L. N. Skuja, A. N. Streletsky, and A. B. Pacovich, Solid State Commun. A, 50, 1069 (1984).

    Article  ADS  Google Scholar 

  128. L. N. Skuja, K. Tanimura, and N. Itoh, J. Appl. Phys., 80, 3518 (1996).

    Article  ADS  Google Scholar 

  129. K. Seol, M. Fujimaki, and Y. Ohki, Phys. Rev. B, 59, 1590 (1999).

    Article  ADS  Google Scholar 

  130. A. O. Volchek, A. I. Gusarov, A. P. Zhevlakov, and D. O. Leshchenko, Opt. Spektrosk., 80, 439 (1996).

    Google Scholar 

  131. L. N. Skuja, J. Non-Cryst. Solids, 239, 16 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated From A Manuscript Submitted On June 10, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelik, V.S., Kozhevin, A.E., Mikov, S.N. et al. Laser spectroscopy of nanocrystals of aluminum and silicon oxides. J Russ Laser Res 28, 55–102 (2007). https://doi.org/10.1007/s10946-007-0004-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-007-0004-9

Keywords

Navigation