Skip to main content
Log in

Electromagnetic solitons in a system of carbon nanotubes

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The possibility of existence of electromagnetic solitons is explored based on the coupled equations for the classical function of electron distribution in carbon nanotubes and the Maxwell equations for the electromagnetic field. The solitons emerge due to a concerted change in the classical distribution function and the electric field generated by the nonequilibrium electrons of a carbon nanotube. An efficient equation was obtained to describe the electromagnetic-field dynamics. The data of numerical calculations indicating the existence of solitons are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Sergeyev, Nanochemistry [in Russian], M. V. Lomonosov Moscow State University (2003).

  2. M. C. Roko, P. S. Williams, and P. Alivisatos (eds), Nanotechnology Research Directions. IWQN Workshop Report: Vision for Nanotechnology in the Next Decade, Kluwer Academic (2000).

  3. S. A. Maksimenko and G. Ya. Slepyan, “Nanoelectromagnetics of low-dimensional structure,” in: A. Lakhtakia (ed.), Handbook of Nanotechnology. Nanometer Structure: Theory, Modeling, and Simulation, SPIE Press, Bellingham (2004).

    Google Scholar 

  4. Hyatt M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, Orlando (1985).

    Google Scholar 

  5. G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, et al., Phys. Rev. A, 60, R777 (1999).

    Article  ADS  Google Scholar 

  6. M. F. Lin and K. W.-K. Shung, Phys. Rev. B, 50, 17744 (1994).

    Google Scholar 

  7. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B, 46, 1804 (1992).

    Article  ADS  Google Scholar 

  8. P. R. Wallace, Phys. Rev., 71, 622 (1947).

    Article  MATH  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Field Theory [in Russian], Fizmatlit, Noscow (1988).

    MATH  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Physical Kinetics [in Russian], Nauka, Mosccow (1979).

    MATH  Google Scholar 

  11. S. J. Tans, M. H. Devoret, H. Dai, et al., Nature, 386, 474 (1997).

    Article  Google Scholar 

  12. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  13. E. M. Epshtein, Fiz. Tverd. Tela, 19, 3456–3458 (1977).

    Google Scholar 

  14. R. Bulla-and F. Codry (eds.), Solitons [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  15. P. W. Kitchenside, P. J. Caudrey, and R. K. Bullough, Phys. Scripta, 20, 673 (1979).

    ADS  Google Scholar 

  16. K. A. Gorshkov, L. A. Ostrovsky, and V. V. Papko, Zh. Éksp. Teor. Fiz., 71, 585 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from a manuscript submitted on July 4, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belonenko, M.B., Demushkina, E.V. & Lebedev, N.G. Electromagnetic solitons in a system of carbon nanotubes. J Russ Laser Res 27, 457–465 (2006). https://doi.org/10.1007/s10946-006-0027-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0027-7

Keywords

Navigation