Skip to main content
Log in

Entanglement and its operational measure

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

An operational representation of concurrence measuring the entanglement of bipartite systems by means of averages of basic observables is discussed. We prove the validity of this representation for bipartite systems with any dimension of a single-party Hilbert space. We show that Wigner-Yanase “skew” information gives a reasonable estimation of the amount of entanglement (in ebits) carried by mixed two-qubit states

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Vidal, J. Mod. Opt., 47, 355 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A, 62, 06231 (2000).

  3. F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A, 68, 012103 (2003).

    Google Scholar 

  4. A. A. Klyachko and A. S. Shumovsky, J. Opt. B: Quantum Semiclass. Opt., 5, S322 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. A. Klyachko, E-print quant-ph/0206012.

  6. A. A. Klyachko and A. S. Shumovsky, J. Opt. B: Quantum Semiclass. Opt., 6, S29 (2004).

    Article  ADS  Google Scholar 

  7. A. A. Klyachko and A. S. Shumovsky, E-print quant-ph/0512213; J. Phys. Conf. Ser., 36, 87 (2006).

    Article  ADS  Google Scholar 

  8. E. Vinberg and V. Popov, Invariant Theory, Springer, Berlin (1992).

    MATH  Google Scholar 

  9. S. Hill and W. K. Wootters, Phys. Rev. Lett., 78, 5022 (1997). W. K. Wooters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  10. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A, 61, 052306 (2000).

    Google Scholar 

  11. A. Miyake, Phys. Rev. A, 67, 012108 (2003).

    Google Scholar 

  12. P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A, 64, 042315 (2001).

    Google Scholar 

  13. F. Minnert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett., 92, 167902 (2004).

    Google Scholar 

  14. F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev. Lett. 92, 087201 (2004).

    Google Scholar 

  15. B.-Q. Jin and V. E. Korepin, Phys. Rev. A, 69, 062314 (2004).

    Google Scholar 

  16. A. A. Klyachko, B. Oztop, and A. S. Shumovsky, Appl. Phys. Lett., 88, 124102 (2006).

    Google Scholar 

  17. J. S. Bell, Rev. Mod. Phys., 38, 447 (1966).

    Article  MATH  ADS  Google Scholar 

  18. E. P Wigner, Z. Phys., 131, 101 (1952). E. P. Wigner and M. M. Yanase, Proc. Natl. Acad. Sci. USA, 19, 910 (1963).

    MathSciNet  Google Scholar 

  19. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1996).

    MATH  Google Scholar 

  20. R. Hermann, Lie Groups for Physicists, Benjamin, New York (1966).

    MATH  Google Scholar 

  21. G. G. Emch, Mathematical and Conceptual Foundations of 20th Century Physics, North Holland, Amsterdam (1984).

    MATH  Google Scholar 

  22. C. M. Caves and G. J. Milburn, Opt. Commun., 179, 439 (2000).

    Article  ADS  Google Scholar 

  23. A. T. Bölükbaşi and T. Dereli, E-print quant-ph/0511111; J. Phys. Conf. Ser., 36, 28 (2006).

    Article  Google Scholar 

  24. H. Bechman-Pasquinucci and A. Peres, Phys. Rev. Lett., 85, 3313 (2000). D. Bruss and C. Macchiavello, Phys. Rev. Lett., 88, 127901 (2002). G. A. Maslennikov, A. A. Zhukov, M. V. Chekhova, and S. P. Kulik, J. Opt. B: Quantum Semicalss. Opt., 5, 530 (2003). D. Kaszlikowski, D. K. L. Oi, M. Christandl, K. Chang, A. Ekert, L. C. Kwek, and C. H. Oh, Phys. Rev. A, 67, 012310 (2003). T. Durt T., N. Cerf, N. Gisin, and M. Zukowski, Phys. Rev. A, 67, 012311 (2003). T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, Phys. Rev. A, 69, 032313 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  25. M. A. Can, A. A. Klyachko, and A. S. Shumovsky, J. Opt. B: Quantum Semiclass. Opt., 7, L1 (2005).

    Article  MathSciNet  Google Scholar 

  26. M. A. Can, A. A. Klyachko, and A. S. Shumovsky, Phys. Rev. A, 66, 02111 (2002).

    Google Scholar 

  27. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New York (2000).

    MATH  Google Scholar 

  28. D. Bruß, J. Math. Phys., 43, 4237 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. A. Cabello, Phys. Rev. A, 65, 032108 (2002).

    Google Scholar 

  30. A. A. Klyachko, E-print quant-ph/0511102; J. Phys. Conf. Ser., 36, 72 (2006).

    Article  ADS  Google Scholar 

  31. A. Binicioglu, Ö. Çakir, A. A. Klyachko, and A. S. Shumovsky, Int. J. Quantum Inform., 3, 661 (2005).

    Article  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford (1959).

    Google Scholar 

  33. H. Araki and M. M. Yanase, Phys. Rev., 120, 622 (1960). F. J. Dyson and A. Leonard, J. Math. Phys., 8, 423 (1967). F. J. Dyson, J. Math. Phys., 8, 1538 (1967). E. H. Lieb and M. B. Ruskai, Phys. Rev. Lett., 30, 434 (1973). A. Uhlman, Comm. Math. Phys., 54, 21 (1977). M. Ozawa, Phys. Rev. Lett., 88, 050402 (2002). J. Řeháček and Z. Hradil, Phys. Rev. Lett., 90 127904 (2003). S.-L. Luo, Phys. Rev. Lett., 91, 180403 (2003). P. Gibilisco and T. Isola, J. Math. Phys., 44, 3752 (2003). S.-L. Luo and Q. Zhang, Phys. Rev. A, 69, 032106 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, Pergamon Press, Oxford (1982).

    MATH  Google Scholar 

  35. A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, Phys. Rev. A, 60, R4209 (1999). M. B. Nasr, A. F. Abouraddy, M. C. Booth, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, U. Kempe, and R. Wollescheensky, Phys. Rev. A, 65, 023816 (2002). G. DiGiuseppe, M. Atature, M. Shaw, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, A. J. Miller, S. W. Nam, and J. M. Martinis, Phys. Rev. A, 68, 063817 (2003). Yu. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, Phys. Rev. Lett., 93, 230503 (2004).

  36. A. L. Onishchik and E. B. Vinberg (eds.), Lie Groups and Lie Algebras III, Encyclopedia of Math. Science, Springer, Berlin (1994), Vol. 41.

    Google Scholar 

  37. R. F. Werner, Phys. Rev. A, 40, 4277 (1989).

    Article  ADS  Google Scholar 

  38. T. Hiroshima and S. Ishizaka, Phys. Rev. A, 62, 044302 (2000).

    Google Scholar 

  39. M. Murano, M. B. Plenio, S. Popesku, V. Vedral, and P. L. Knight, Phys. Rev. A, 57, R4075, R4078 (1998).

  40. V. A. Andreev and V. I. Man’ko, J. Opt. B: Quantum Semiclass. Opt., 2 122 (2000). O. V. Man’ko, V. I. Man’ko, G. Marmo, A. Shaji, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 339, 194 (2005).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Andrey Vinogradov.

Manuscript submitted by the authors in English on April 12, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyachko, A.A., Öztop, B. & Shumovsky, A.S. Entanglement and its operational measure. J Russ Laser Res 27, 389–402 (2006). https://doi.org/10.1007/s10946-006-0021-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0021-0

Keywords

Navigation