Skip to main content
Log in

The Heisenberg-Langevin model of a quantum damped harmonic oscillator with time-dependent frequency and damping coefficients

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We develop a consistent model of a quantum damped harmonic oscillator with arbitrary time-dependent frequency and damping coefficients within the framework of the Heisenberg-Langevin equations with two noncommuting delta-correlated noise operators justifying the choice of the “minimal noise” set of damping coefficients and correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Husimi, “Miscellanea in elementary quantum mechanics. II,” Prog. Theor. Phys., 9, 381–402 (1953).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. V. V. Dodonov and V. I. Man’ko, Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of the Lebedev Physical Institute, Nova Science, Commack, New York (1989), Vol. 183.

    Google Scholar 

  3. V. V. Dodonov, “Parametric excitation and generation of nonclassical states in linear media,” in: V. V. Dodonov and V. I. Man’ko (eds.), Theory of Nonclassical States of Light, Taylor & Francis, London (2003), pp. 153–218.

    Google Scholar 

  4. L. Landau, “Das Dämpfungsproblem in der Wellenmechanik,” Z. Phys., 45, 430–441 (1927) [“The damping problem in wave mechanics,” in: D. Ter Haar (ed.), Collected Papers of L. D. Landau, Gordon & Breach, New York (1965), pp. 8–18].

    Article  MATH  Google Scholar 

  5. F. Bloch, “Zur Strahlungsdämpfung in der Quantenmechanik” [“Radiation damping in quantummechanics”], Phys. Z., 29, 58–66 (1928).

    MATH  Google Scholar 

  6. V. V. Dodonov and V. I. Man’ko, “Coherent states and the resonance of a quantum damped oscillator,” Phys. Rev. A, 20, 550–560 (1979).

    Article  ADS  Google Scholar 

  7. C.-I. Um, K.-H. Yeon, and T. F. George, “The quantum damped harmonic oscillator,” Phys. Rep., 362, 63–192 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. V. V. Dodonov, “Dynamical Casimir effect in a nondegenerate cavity with losses and detuning,” Phys. Rev. A, 58, 4147–4152 (1998).

    Article  ADS  Google Scholar 

  9. V. V. Dodonov, “Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries,” in: M. W. Evans (ed.), Modern Nonlinear Optics, Advances in Chemical Physics Series, Wiley, New York (2001), Vol. 119, Pt. 1, pp. 309–394.

    Google Scholar 

  10. V. V. Dodonov and A. V. Dodonov, “Quantum harmonic oscillator and nonstationary Casimir effect,” J. Russ. Laser Res., 26, 445–483 (2005).

    Article  Google Scholar 

  11. V. I. Man’ko, “The Casimir effect and quantum vacuum generator,” J. Sov. Laser Res., 12, 383–385 (1991).

    Article  Google Scholar 

  12. E. Sassaroli, Y. N. Srivastava, and A. Widom, “Photon production by the dynamical Casimir effect,” Phys. Rev. A, 50, 1027–1034 (1994).

    Article  ADS  Google Scholar 

  13. C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamic Casimir effect,” Europhys. Lett., 70, 754–760 (2005).

    Article  ADS  Google Scholar 

  14. I. R. Senitzky, “Dissipation in quantum mechanics. The harmonic oscillator,” Phys. Rev., 119, 670–679 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. J. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys., 2, 407–432 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  16. H. A. Haus and J. A. Mullen, “Quantum noise in linear amplifiers,” Phys. Rev., 128, 2407–2413 (1962).

    Article  ADS  Google Scholar 

  17. M. Lax, “Quantum noise. IV. Quantum theory of noise sources,” Phys. Rev., 145, 110–129 (1966).

    Article  ADS  Google Scholar 

  18. H. Dekker, “Classical and quantum mechanics of the damped harmonic oscillator,” Phys. Rep., 80, 1–112 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  19. V. V. Dodonov and V. I. Man’ko, “Wigner functions of a damped quantum oscillator,” in: M. A. Markov, V. I. Man’ko, and A. E. Shabad (eds.), Group Theoretical Methods in Physics, Proceedings of the Second International Seminar, Harwood Academic Publishers, Chur-London-Paris-New York (1985), Vol. 1, pp. 705–717 [Russian original published by Nauka, Moscow (1983), Vol. 2, pp. 109–122].

    Google Scholar 

  20. V. V. Dodonov and O. V. Man’ko, “Quantum damped oscillator in a magnetic field,” Physica A, 130, 353–366 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  21. V. V. Dodonov and V. I. Man’ko, “Density matrices and Wigner functions of quasiclassical quantum systems,” in: Group Theory, Gravitation and Elementary Particle Physics, Proceedings of the Lebedev Physical Institute, Nova Science, Commack, New York (1987), Vol. 167, pp. 7–101.

    Google Scholar 

  22. V. V. Dodonov and V. I. Man’ko, “Evolution equations for the density matrices of linear open systems,” in: Classical and Quantum Effects in Electrodynamics, Proceedings of the Lebedev Physical Institute, Nova Science, Commack, New York (1988), Vol. 176, pp. 53–60.

    Google Scholar 

  23. V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, “Quantum nonstationary oscillator: models and applications,” J. Russ. Laser Res., 16, 1–56 (1995); Eprint quant-ph/0210030.

    Google Scholar 

  24. A. Barchielli, “Continual measurements for quantum open systems,” Nuovo Cimento B, 74, 113–137 (1983).

    MathSciNet  Google Scholar 

  25. H. Dekker and M. C. Valsakumar, “A fundamental constraint on quantum mechanical diffusion coefficients,” Phys. Lett. A, 104, 67–71 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Sandulescu and H. Scutaru, “Open quantum systems and the damping of collective modes in deep inelastic collisions,” Ann. Phys., 173, 277–317 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, and W. Scheid, “Open quantum systems,” Int. J. Mod. Phys. E, 3, 635–714 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  28. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes,” Nucl. Phys. A, 645, 376–398 (1999).

    Article  ADS  Google Scholar 

  29. A. Isar, A. Sandulescu, and W. Scheid, “Purity and decoherence in the theory of a damped harmonic oscillator,” Phys. Rev. E, 60, 6371–6381 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. B. Vacchini, “Quantum optical versus quantum Brownian motion master equation in terms of covariance and equilibrium properties,” J. Math. Phys., 43, 5446–5458 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Z. Kanokov, Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients,” Phys. Rev. E, 71, 016121 (2005). Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Non-Markovian dynamics of quantum systems. II. Decay rate, capture, and pure states,” Phys. Rev. E, 71, 016122 (2005).

    Google Scholar 

  32. V. V. Dodonov, “Time-dependent quantum damped oscillator with ‘minimal noise’: application to the nonstationary Casimir effect in non-ideal cavities,” J. Opt. B: Quantum Semiclass. Opt., 7, S445–S451 (2005).

    Article  Google Scholar 

  33. B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A, 46, 4306–4322 (1992).

    Article  ADS  Google Scholar 

  34. R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers, “Electromagnetic field quantization in absorbing dielectrics,” Phys. Rev. A, 52, 4823–4838 (1995).

    Article  ADS  Google Scholar 

  35. T. Gruner and D.-G. Welsch, “Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics,” Phys. Rev. A, 53, 1818–1829 (1996).

    Article  ADS  Google Scholar 

  36. A. Tip, L. Knoll, S. Scheel, and D.-G. Welsch, “Equivalence of the Langevin and auxiliary-field quantization methods for absorbing dielectrics,” Phys. Rev. A, 63, 043806 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Dr. Andrey Vinogradov on the occasion of the 60th anniversary of his birth.

Manuscript submitted by the authors in English on April 22, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodonov, V.V., Dodonov, A.V. The Heisenberg-Langevin model of a quantum damped harmonic oscillator with time-dependent frequency and damping coefficients. J Russ Laser Res 27, 379–388 (2006). https://doi.org/10.1007/s10946-006-0020-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0020-1

Keywords

Navigation