Skip to main content
Log in

Heisenberg’s uncertainty relation may be violated in a single measurement

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The well-known Heisenberg’s uncertainty relation is an inequality between uncertainties of canonically conjugate observables in a given state. In this interpretation, the Heisenberg’s uncertainty relation is a rigorous mathematical theorem and is, therefore, always valid. However, the same inequality is often applied in the situation of measurement, where it is illustrated in a quite different way. The uncertainty relation is then an inequality connecting the precision (resolution) of the measurement of one observable and the uncertainty of the conjugate observable in the state arising after the measurement. It turns out that in such an interpretation the Heisenberg’s inequality may be violated for some measurement readouts that emerge with small but finite probabilities. Making use of the uncertainties averaged in a special way over all possible measurement readouts, one may formulate an inequality of the type of Heisenberg’s inequality but valid for any measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Mensky, Quantum Measurements and Decoherence. Models and Phenomenology, Kluwer Academic Publishers, Dordrecht, Boston & London (2000) [Russian translation: Moscow, Fizmatlit (2001)].

    MATH  Google Scholar 

  2. D. Bohm, Quantum Theory, Prentice-Hall, New York (1952).

    MATH  Google Scholar 

  3. P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition, Clarendon Press, Oxford (1958).

    MATH  Google Scholar 

  4. L. I. Mandelstam, Lections on Optics, Relativity and Quantum Mechanics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Nonrelativistic Theory, Pergamon Press, Oxford (1987).

    Google Scholar 

  6. A. Messiah, Quantum Mechanics, North-Holland Publishing Co., Amsterdam (1970), Vol. I.

    MATH  Google Scholar 

  7. V. B. Braginsky and F. Y. Khalili, Quantum Measurement, Cambridge University Press, Cambridge (1992).

    MATH  Google Scholar 

  8. S. Stenholm, “Simultaneous measurement of conjugate variables,” Ann. Phys., 218, 233–254 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York (1976).

    Google Scholar 

  10. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam (1982).

    MATH  Google Scholar 

  11. H. Martens, The Uncertainty Principle, PhD Thesis, Eindhoven (1991).

  12. M. Ozawa, “Uncertainty relations for noise and disturbance in generalized quantum measurements,” Ann. Phys., 311, 350–416 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Yu. I. Vorontsov, “Uncertainty relation and the relation measurement error-perturbation,” Usp. Fiz. Nauk, 175, 1053–1068 2005).

    Article  Google Scholar 

  14. M. O. Scully, B.-G. Englert, and H. Walther, “Quantum optical tests of complementarity,” Nature, 351, 111–116 (1991).

    Article  ADS  Google Scholar 

  15. H. Wiseman and F. Harrison, “Uncertainty over complementarity?” Nature, 377, 584 (1995).

    Article  ADS  Google Scholar 

  16. B.-G. Englert, M. O. Scully, and H. Walther, “Complementarity and uncertainty,” Nature, 375, 367–368 (1995).

    Article  ADS  Google Scholar 

  17. P. Storey, S. Tan, M. Collett, and D. Walls, “Path detection and the uncertainty principle,” Nature, 367, 626–628 (1994).

    Article  ADS  Google Scholar 

  18. H. M. Wiseman, F. E. Harrison, M. J. Collett, S. M. Tan, D. F. Walls, and R. B. Killip, “Nonlocal momentum transfer in Welcher-Weg measurements,” Phys. Rev. A, 56, 55–75 (1997).

    Article  ADS  Google Scholar 

  19. P. Knight, “Where the weirdness comes from,” Nature, 395, 12–13 (1998).

    Article  ADS  Google Scholar 

  20. S. Dürr, T. Nonn, and G. Rempe, “Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer,” Nature, 395, 33–37 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper submitted by the author in English on 28 April 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mensky, M.B. Heisenberg’s uncertainty relation may be violated in a single measurement. J Russ Laser Res 27, 332–340 (2006). https://doi.org/10.1007/s10946-006-0017-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0017-9

Keywords

Navigation